

Name: Period: Seat#:

STATION 1 • MASS ACTION EXPRESSIONS

Write the mass action expression for the equilibrium: $Fe_3O_4(s) + 4H_2(g) \rightleftharpoons 3Fe(s) + 4H_2O(g)$

Write the mass action expression for the equilibrium: $Ca(OH)_2(s) \rightleftharpoons Ca^{2+}(aq) + 2 OH^{-}(aq)$

The equilibrium constant, $K_c = 7.9 \times 10^{-6}$, is this equilibrium system reactant or product-favored.

Chemical Equilibrium

STATION 2 • MANIPULATING K

Given:

$$H_2O(1) \rightleftharpoons H^+(aq) + OH^-(aq)$$

 $HCN(aq) \rightleftharpoons H^+(aq) + CN^-(aq)$

$$K_c = 1 \times 10^{-14}$$

 $K_c = 4.0 \times 10^{-10}$

Calculate K_c for this reaction:

$$HCN(aq) + OH^{-}(aq) \rightleftharpoons H_2O(l) + CN^{-}(aq)$$

$$K_c = ???$$

This reaction is _____-favored.

Chemical Equilibrium

STATION 3 · Kp & Kc Consider the equilibrium: $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$. At 100°C, the equilibrium concentrations for this system are: [NO] = 0.52 M; $[O_2] = 0.24 \text{ M};$ $[NO_2] = 0.18 \text{ M}$ Write the expression for K_c and calculate its value at this temperature? What is Δn for this system? _____ Write the expression for K_p and calculate its value at this temperature. **Chemical Equilibrium** STATION 4 • LE CHÂTELIER'S PRINCIPLE Consider the gaseous equilibrium: $2CCl_4(g) + O_2(g) \Rightarrow 2COCl_2(g) + 2Cl_2(g) \quad \Delta H = +35 \text{ kJ}$ Predict the effect each change would have on the concentrations of the each substance. Add CCl₄ Remove Cl₂ Add COCl₂ Increase temperature Reduce container volume Add a catalyst Remove O2 Add He to increase pressure

A different equilibrium shifts toward the reactants when the temperature is increased. From this observation,

you know that the reaction is (exothermic / endothermic).

Chemical Equilibrium

STATION 5 • ICE BOX PROBLEM

Consider the equilibrium: $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

If 0.200 mol $SO_3(g)$ is placed a 0.500 Liter container, it is found that 0.050 mole of $O_2(g)$ is in the container at equilibrium. Fill in the ICE box and determine the K_c for this reaction.

	SO_2	${ m O}_2$	SO_3
Initial			
Change			
Equilibrium			

Chemical Equilibrium

STATION 6 • ANOTHER ICE BOX PROBLEM

At 985°C, the equilibrium constant, K_c , for the reaction, $H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$, is 1.63.

If 2.00 moles each of $H_2(g)$ and $CO_2(g)$ are placed in a 1.00-Liter container and allowed to come to equilibrium, determine the equilibrium concentrations of the four chemicals.

	H_2	CO_2	H_2O	CO
Initial				
Change				
Equilibrium				

Chemical Equilibrium

STATION 7 • TEST QUOTIENT, Q

Consider the equilibrium: $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$. $K_c = 0.499$

The system is set up with the following concentrations:

[NO] = 0.50 M;

 $[O_2] = 0.25 \text{ M};$

 $[NO_2] = 0.25 \text{ M}$

This reaction will _____ (shift right, shift left, remain unchanged).

Justify your prediction.

Chemical Equilibrium

STATION NChO PROBLEMS

33. Mercury(II) oxide, HgO, is decomposed upon heating according to this equation.

$$2 \text{HgO}(s) \rightleftharpoons 2 \text{Hg}(l) + O_2(g)$$

What is the equilibrium expression for this process?

(A)
$$K = \frac{[Hg]^2 [O_2]}{[HgO]^2}$$
 (B) $K = \frac{[Hg][O_2]}{[HgO]}$

(B)
$$K = \frac{\text{[Hg][O_2]}}{\text{[HgO]}}$$

(C)
$$K = [Hg][O_2]$$

(D)
$$K = [O_2]$$

34. Consider this reaction.

$$2NO(g) + Cl_2(g) \rightleftharpoons 2NOCl(g)$$

$$\Delta H = -78.38 \text{ kJ}$$

What conditions of temperature and pressure will produce the highest yield of NOCl at equilibrium?

	1	Γ
(A)	high	high

(B) high low

(C) low

high

(D)

low low Questions 32 and 33 should both be answered with reference to this system.

$$H_2(g) + I_2(s) \rightleftharpoons 2HI(g)$$
 $\Delta H = +51.8 \text{ kJ}$

32. Which would increase the equilibrium quantity of HI(g)? Assume the system has reached equilibrium with all three components present.

I. increasing pressure

- II. increasing temperature
- **(A) I** only
- (B) II only
- (C) Both I and II
- (D) Neither I nor II
- 33. What is the equilibrium constant expression for this system?

(A)
$$K = \frac{[HI]^2}{[H_2][I_2]}$$
 (B) $K = \frac{[H_2][I_2]}{[HI]^2}$

(B)
$$K = \frac{[H_2][I_2]}{[HI]^2}$$

(C)
$$K = \frac{2[HI]}{[H_2][I_2]}$$
 (D) $K = \frac{[HI]^2}{[H_2]}$

(D)
$$K = \frac{[HI]^2}{[H_2]}$$

Chemical Equilibrium – Not assessed. Challenge Problem STATION 9 • PREDICTING REACTIONS

i) What are the oxidation states of the N atom before and after the reaction?	i) Balanced equa	ntion:				
i) What are the oxidation states of the N atom before and after the reaction?						
i) What are the oxidation states of the N atom before and after the reaction?						
	ii) What are the	oxidation states o	f the N atom be	efore and after t	he reaction?	
	,					