Name:

Date:

Period: Seat #:

Check off each item if you can do the question. Write down a question to ask if you cannot do the question.

Kp & Kc

 $\begin{array}{rl} 2 \ \text{NO}(g) \ + \ Br_2(g) \ \leftrightarrows \ 2 \ \text{NOBr}(g) \\ K_c = 1.2 \ x \ 10^{-10} & \text{at } 25 \ ^\circ\text{C} \end{array}$

Write the K_p expression for this reaction and calculate its value. [R = 0.0821 L·atm/mol·K]

ICE Box Problem

A solution is prepared by dissolving 0.050 mol of diiodocyclohexane, $C_6H_{10}I_2$, in the solvent CCl₄. The total solution volume is 1.00 L. When the reaction, $C_6H_{10}I_2 \leftrightarrows C_6H_{10} + I_2$, comes to equilibrium, the concentration of I_2 is 0.035 mol/L. What is are the concentrations of $C_6H_{10}I_2$ and C_6H_{10} at equilibrium?

I_2

Le Châtelier's' Principle Demo

		$Co(H_2O)_6^{2+}(aq) + pink$	$+4 \operatorname{Cl}^{-}(\operatorname{aq}) \rightleftharpoons$	CoCl ₄ ^{2–} (aq) + blue	6 H ₂ O(l)
a)	add HCl(aq)				
b)	add H ₂ O(l)				
c)	increase the temperature				
d)	decrease the temperature				
e)	add AgNO ₃ (aq)				

Note:

Predict (a) and (b) before the demonstration. Watch (c) and determine whether the reaction is endo- or exo-thermic. Predict (e) before the demonstration.