Г		
I	QUICK CHECK #2a	

Seat #:

Name:

Period:

Date: Check off each item if you can do the question. Write down a question to ask if you cannot do the question.

$\Box K_p \& K_c$

 $2 \operatorname{NO}(g) + \operatorname{Br}_2(g) \leftrightarrows 2 \operatorname{NOBr}(g)$ $K_c = 1.2 \times 10^{-10}$ at 25 °C

Write the K_p expression for this reaction and calculate its value. [$R = 0.0821 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$]

ICE Box Problem

A solution is prepared by dissolving 0.050 mol of diiodocyclohexane, C₆H₁₀I₂, in the solvent CCl₄. The total solution volume is 1.00 L. When the reaction, $C_6H_{10}I_2 \leftrightarrows C_6H_{10} + I_2$, comes to equilibrium, the concentration of I_2 is 0.035 mol/L. What is are the concentrations of $C_6H_{10}I_2$ and C_6H_{10} at equilibrium?

$C_6H_{10}I_2$	₽	C_6H_{10}	+	I_2

Le Châtelier's' Principle Demo

	Co(H ₂ O) ₆ ²⁺ (a pink	$(aq) + 4 Cl^{-}(aq) =$	$\stackrel{\Rightarrow}{=} \operatorname{CoCl}_{4^{2-}}(\operatorname{aq})$ blue	$+ 6 H_2O(1)$
a) add HCl(aq)				
b) add $H_2O(l)$				
c) increase the temperature				
d) decrease the temperature				
e) add AgNO ₃ (aq)				

Note:

Predict (a) and (b) before the demonstration. Watch (c) and determine whether the reaction is endo- or exo-thermic. Predict (e) before the demonstration.