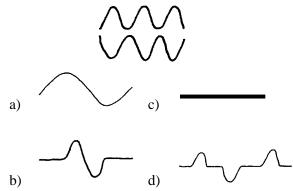
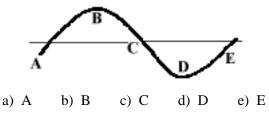
Name			
Period	 Date	 /	_/

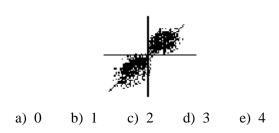

7 • Atomic Structure

						PRACTICE TEST		
$c = \lambda v$	E = hu	$E = \frac{hc}{\lambda}$	$E_n = -$	$\frac{\text{Rhc}}{n^2}$	$\lambda = \frac{h}{mv}$	$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right)$		
c = 2.998	x 10 ⁸ m/s	h = 6.626 x	10^{-34} J·s	Rhc =	$= 2.18 \times 10^{-18}$	J $R = 1.0974 \times 10^7 \text{ m}^{-1}$		
mass of an electron = $9.11 \times 10^{-31} \text{ kg}$								

 What wavelength corresponds to a frequency of 8.22 x 10⁹ Hz?

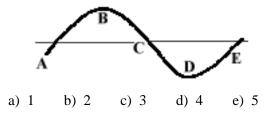

- a) 0.307 m d) 0.110 m
- b) 0.0365 m e) 27.4 m
- c) 0.122 m
- A radio station transmits at 110 MHz (110 x 10⁶ Hz). What wavelength is this radio wave?
 - a) $3.65 \ge 10^{-5} = m$ c) $3.81 \ge 10^{-5} = m$
 - b) 3.30 m d) 2.73 m
- 3. Which one of the following is NOT a proper unit for frequency?
 - a) Hz c) $m \cdot s^{-1}$ b) s^{-1} d) $\frac{1}{sec}$
- 4. Calculate the wavelength of the fourth line in the Balmer series (the visible series) of the hydrogen spectrum.
 - a) 0.12334 m d) 4.1029×10^{-7} m
 - b) 24.373 m e) 36.559 m
 - c) 2.7353 x 10⁻⁷ m
- 5. What is the relationship between the energy of a photon of light and its frequency?
 - a) E = vb) $E = \frac{h}{v}$ c) $E = \frac{h}{h}$ c) $E = \frac{v}{h}$ c) $E = \frac{v}{h}$
 - c) E = hv

- 6. What is the energy needed to raise an electron in the hydrogen atom from the second energy level to the third energy level?
 - a) $1.52 \times 10^4 \text{ J}$ d) $4.48 \times 10^{-19} \text{ J}$
 - b) $3.63 \ge 10^{-19} \text{ J}$ e) $3.03 \ge 10^{-19} \text{ J}$
 - c) 2.18 x 10⁻¹⁹ J
- What is the de Broglie wavelength of an electron moving at 80.0% the speed of light.
 - a) $3.03 \times 10^{-12} \text{ m}$ c) $3.30 \times 10^{11} \text{ m}$
 - b) $2.42 \text{ x } 10^{-12} \text{ m}$ d) $1.59 \text{ x } 10^{-25} \text{ m}$
- 8. What resultant is expected from the interference of the two waves shown below?



- 9. Which quantum number determines the type of **subshell** occupied by an electron (s, p, d, f, etc.)?
 - a) *a* c) *m_l*
 - b) *l* d) *g*

10. What position on the traveling wave shown below corresponds to a crest?


- 11. How many orbitals make up the 4d subshell?a) 0b) 1c) 3d) 5e) 7
- 12. The value of ℓ that is related to the following orbital is:

13. Which of the following sets of quantum numbers is possible for a **3d** electron?

a)
$$u = 3, l = 3, m_l = -2, m_s = +\frac{1}{2}$$

- b) $a = 2, l = 1, m_l = +1, m_s = -\frac{1}{2}$
- c) $u = 3, l = 1, m_l = 0, m_s = -\frac{1}{2}$
- d) $u = 3, l = 2, m_l = -2, m_s = +\frac{1}{2}$
- e) $u = 4, l = 1, m_l = +1, m_s = +\frac{1}{2}$
- 14. If this were a standing wave, there are ______ node(s) shown.

- 15. When U=2, the possible values of m_t are
 - a) 0, 1
 - b) 0, 1, 2
 - c) +1, 0, -1
 - d) +2, +1, 0, -1, -2
 - e) +2, 0, -2
- 16. The red line in the hydrogen spectrum is the result of an electron moving from?
 - a) $n=2 \rightarrow n=5$ d) $n=4 \rightarrow n=2$
 - b) $n=3 \rightarrow n=2$ e) $n=2 \rightarrow n=3$
 - c) $n=2 \rightarrow n=1$
- 17. Who explained that light has both particle and wave character?
 - a) Thomson d) Bohr
 - b) Rutherford e) de Broglie
 - c) Einstein
- 18. Which energy level of the hydrogen atom is not involved in the Balmer Series of visible lines?
 a) 1 b) 2 c) 3 d) 4 e) 5
- 19. Which of the following best supports the concept that electrons in atoms have quantized energies?
 - a) The photoelectric effect
 - b) The alpha particle scattering experiment
 - c) The emission spectrum of hydrogen
 - d) The wave-particle duality of an electron
 - e) The charge/mass ratio of an electron
- 20. Draw an "s" orbital and a "p" orbital.