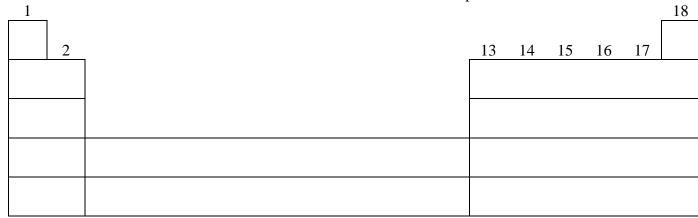
Name	Per	

STATION 1 - ORBITALS AND ELECTRONS

1.	The number	of electrons	that can	occupy a 3d	l orbital is	

- 2. The highest energy orbital in boron, B, is _____.
- 3. The orbital **farthest** from the nucleus in Cr is _____.
- 4. The number of **orbitals** when n=3 is _____.
- 5. The number of **electrons** that have n=2 is _____.
- 6. The orbital that fills **after** the 6s is _____.
- 7. Circle the orbital representations that **could** exist: $4s^3$ $5g^{18}$ $3p^4$ $2p^8$ $6d^3$ $1s^1$ $7f^{15}$
- 8. When Zn becomes an ion, it loses its **electrons** from the _____ orbital.

8 • Electron Configurations and Periodicity


STATION 2 - ELECTRON CONFIGURATIONS

Write the short form and long form **electron configurations** for **S** and **Cu**.

S Cu long: long: short: short:

STATION 3 - THE PERIODIC TABLE

Write in the last orbital filled in each zone of the periodic table.

Circle the following element(s) that would be **paramagnetic**: Zn Mg Mn²⁺ N O²⁻ Co²⁺

8 • Electron Configurations and Periodicity

STATION 4 - IONIZATION ENERGY

The Period 3 Elements are:

Na Mg Al Si P S Cl A

Which Period 3 element has the following five ionization energies?

IE_1	IE_2	IE_3	IE_4	IE_5
736 kJ	1445 kJ	7730 kJ	10,600 kJ	13,600 kJ

Which Period 3 element has the following five ionization energies?

IE ₁	IE_2	IE_3	IE_4	IE_5
787 kJ	1575 kJ	3220 kJ	4350 kJ	16,100 kJ

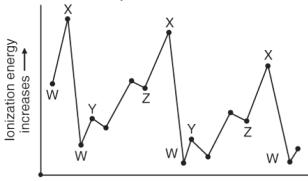
Which period 3 element has the largest 3rd ionization energy? _____

STATION 5 - TRENDS IN IONIZATION ENERGY

For each pair of elements, circle the element with the **larger ionization energy**:

F & Cl Na & Be Mg & Al N & O C & O

Which element, Mg or Ca has the larger first ionization energy? _____ Explain.


Write the equation for the first ionization of Mg:

Write the equation for the first ionization of Cl:

8 • Electron Configurations and Periodicity

STATION 6 - GRAPHED IONIZATION ENERGIES

This is a graph of the ionization energies for the first 20 elements by atomic number.

Atomic number increases →

Determine which families are W, X, and Y:

W is the _____ family and the family.

X is the _____ family.

Y is the _____ family.

STATION 7 - ELEMENTS & ELECTRON CONFIGURATIONS

Identify the elements with the following electron configurations:

$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$
$[Ar] 4s^2 3d^6$
$1s^2 2s^2 2p^5$
$[Xe] 6s^2 4f^4$

[Ne] 3s ¹
$1s^2 2s^2 2p^6 3s^2 3p^1$
$[Kr] 4d^7 5s^2$
$1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$

Write the long form electron configuration for Fe³⁺:

8 • Electron Configurations and Periodicity

Write the **quantum numbers** for the outer electron of rubidium, Rb (Z=37):

STATION 8 - QUANTUM NUMBERS

Write the quantum numbe	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

STATION 9 - TRENDS IN SIZE

For each pair of eleme	ents, circle the element	with the larger atomic	c radius:	·
Mg & Ca	N & O	Sn & As	K & K ⁺	I and I
As you move down a because	• •		us (inc	reases, decreases)
	• ,	y) of elements, the atom	nic radius	(increases, decreases)
Put these five element	s in order from smalle	st atomic radius to larg	gest atomic radius. F	Br Ca K Cs
	Smallest		Largest	
		ntions and P	9 - TREND	S IN SIZE
For each pair of eleme Mg & Ca	ents, circle the element N & O	with the larger atomic Sn & As	c radius: K & K ⁺	I and I
As you move down a because	family (column) of ele	ments, the atomic radiu	as (inc	reases, decreases)
because			gest atomic radius. F	·
1 at these five element		st atomic radius to rarg		Di Cu il Cs
	Smallest		Largest	