South Pasadena • AP Chemistry	Name
	Period Date//
9 • Bonding & Molecula	r Structure
	MORE FRQ PRACTICE

- 1. Consider the molecules PF_3 and PF_5 .
- (a) Draw the Lewis electron-dot structures for PF_3 and PF_5 and predict the molecular geometry of each.

(b) Is the PF_3 molecule polar, or is it nonpolar? Explain.

- (c) On the basis of bonding principles, predict whether each of the following compounds exists. In each case, explain your prediction.
 - (i) NF₅

(ii) AsF_5

- 2. Answer the following questions using principles of chemical bonding and molecular structure.
- (a) Consider the carbon dioxide molecule, CO_2 , and the carbonate ion, CO_3^{2-} .
 - (i) Draw the complete Lewis electron-dot structure for each species.

(ii) Account for the fact at the carbon-oxygen bond length in CO_3^{2-} is greater than the carbon-oxygen bond length in CO_2 .

- (b) Consider the molecules CF₄ and SF₄.
 - (i) Draw the complete Lewis electron-dot structure for each molecule.

(ii) In terms of molecular geometry, account for the fact that the CF_4 molecule is nonpolar, whereas the SF_4 molecule is polar.

Answer 1:

(a) $PF_3 = tripod$ (pyramid); $PF_5 = trigonal bipyramid$

- (b) polar; net dipole moment toward the non-symmetrical position of the fluorines.
- (c) (i) NF₅ doesn't exist, nitrogen can't hybridize to form the dsp^3 orbitals and is also too small to accommodate 5 fluorine atoms around it.

(ii) AsF₅ - does exist, arsenic can hybridize to form the dsp^3 orbitals and is large enough to accommodate 5 fluorine atoms around it.

Answer 2:

(a) (i) **Ö**::C::Ö Ö::C::Ö

, there are two other similar resonance structures for the carbonate ion.

(ii) the pi O=C double bond in CO_2 is shorter than a single O-C resonance sigma-bond (all are identical and are about 1 1/3 bond) found in a carbonate ion.

(b) (i)

(ii) in the tetrahedral CF₄, the polar C-F bonds are cancelled out by the equiangular pull of the 4 bonds. With an expanded octet and trigonal bipyramidal structure, SF₄ has a pair of unbonded electrons at the center of the bipyramid, this gives a "seasaw" shape to the molecule and an uneven pull to the polar S-F bonds.

