Name				
Period	Date	/	/	

12 • Gases and Their Properties

- 1. Which of the following represents the largest gas pressure?
 - a) 5.0 torr d) 5.0 kPa
 - b) 5.0 mmHg e) 5.0 psi
 - c) 5.0 atm
- A mixture of the gases neon and krypton is in a 2.00
 Liter container. The partial pressure of the neon is
 0.40 atm and the partial pressure of the krypton is
 1.20 atm. What is the mole fraction of neon?
 - a) 0.20 d) 0.60
 - b) 0.25 e) 0.80
 - c) 0.33
- 3. If the volume of a confined gas is doubled while the temperature remains constant, what change (if any) would be observed in the pressure?
 - a) It would be half as large.
 - b) It would double.
 - c) It would be four times as large.
 - d) It would be $\frac{1}{4}$ as large.
 - e) It would remain the same.
- 4. A given mass of a gas in a rigid container is heated from 100°C to 500°C. Which of the following responses best describes what will happen to the pressure of the gas? The pressure will
 - a) decrease by a factor of five.
 - b) increase by a factor of five.
 - c) increase by a factor of about two.
 - d) increase by a factor of about eight.
 - e) increase by a factor of about twenty-five.

PRACTICE TEST

- 5. A gas occupies a volume of 1.50 L at 400 mmHg and 100 °C. Which mathematical expression gives the correct volume at 700 mmHg and 200°C?
 - a) $1.50 \times \frac{400}{700} \times \frac{373}{473}$ b) $1.50 \times \frac{400}{700} \times \frac{473}{373}$ c) $1.50 \times \frac{700}{400} \times \frac{373}{473}$ d) $1.50 \times \frac{700}{400} \times \frac{473}{373}$ e) $1.50 \times \frac{400}{700} \times \frac{200}{100}$
- 6. A 4.50 L flask of Ar at 23°C and 734 torr is heated to 55°C. What is the new pressure?
 - a) 366 torr d) 1.07 atm
 - b) 935 torr e) 2.58 atm
 - c) 1.25 torr
- 7. At what temperature will 41.6 grams N₂ exert a pressure of 815 torr in a 20.0 L cylinder?
 - a) 134 K
 b) 176 K
 c) 238 K
- 8. When 0.34 moles of He are mixed with 0.51 moles of Ar in a flask, the total pressure in the flask is found to be 5.0 atm. What is the partial pressure of Ar in this flask?
 - a) 0.85 atm d) 3.0 atm
 - b) 1.5 atm e) 5.0 atm
 - c) 2.0 atm

- 9. Which of the following gases has the greatest density at 0°C and 1 atm?
 - a) N_2 d) Ne
 - b) O₂ e) CO
 - c) F₂
- 10. What is the density of CH_4 at 200°C and 0.115 atm?
 - a) 0.0475 g/L d) 0.870 g/L
 - b) 0.0716 g/L e) 2.09 g/L
 - c) 0.542 g/L
- 11. What is the molar mass of a gas which has a density of 1.30 g/L measured at 27°C and 0.400 atm?
 - a) 38.0 g/mol d) 80.0 g/mol
 - b) 48.0 g/mol e) 97.5 g/mol
 - c) 61.5 g/mol
- 12. Non-ideal behavior for a gas is most likely to be observed under conditions of
 - a) standard temperature and pressure.
 - b) low temperature and high pressure.
 - c) low temperature and low pressure.
 - d) high temperature and high pressure.
 - e) high temperature and low pressure.
- 13. Which of the following gases effuses at the highest rate?
 - a) N_2 d) Ne
 - b) O₂ e) CO
 - c) F₂

- 14. The empirical formula of a certain hydrocarbon is CH₂. When 0.125 moles of this hydrocarbon is completely burned with excess oxygen, it is observed that 8.40 Liters of CO₂ gas are produced at STP. What is the molecular formula of the unknown hydrocarbon?
 - a) CH_2 d) C_3H_6
 - b) C_2H_4 e) C_4H_8
 - c) C_2H_3
- 15. Carbon dioxide gas diffuses through a porous barrier at a rate of 0.20 mL/minute. If an unknown gas diffuses through the same barrier at a rate of 0.25 mL/minute, what is the molar mass of the unknown gas?
 - a) 28 g/mol d) 68 g/mol
 - b) 35 g/mol e) 84 g/mol
 - c) 39 g/mol
- 16. Which of the following statements is true?
 - a) All particles moving with the same velocity have the same kinetic energy.
 - b) All particles at the same temperature have the same kinetic energy.
 - c) All particles having the same kinetic energy have the same mass.
 - d) As the kinetic energy of a particle is halved, the velocity is also halved.
 - e) As the velocity of a particle is doubled, the kinetic energy decreases by a factor of four.

N	ame	

Period ____ Date ___/__/

12 • Gases and Their Properties

TEST ANSWERS

Please use <u>CAPITAL</u> letters:	Useful Information
1	$STP = 0^{\circ}C = 273 \text{ K and}$
2	1 atm = 760 torr = 760 mmHg
3.	= 101.3 kPa = 14.7 psi
	$= 14.7 \frac{lb}{in^2}$
4	in ²
5	Ideal Gas Constant, R
6	$= 62.4 \frac{\text{L} \cdot \text{mmHg}}{\text{mol} \cdot \text{K}}$
7	$= 0.0821 \frac{\text{L} \cdot \text{atm}}{\text{mol} \cdot \text{K}}$
8	
9	$= 8.31 \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}}$
10.	
10	Boyle's Law
	PV = constant
11	Charles' Law
12	$\frac{V}{T} = constant$
13	T = constant
14	Gay-Lussac's Law
15	
	$\frac{P}{T} = constant$
16.	
	Combined Gas Law
	$\frac{PV}{T} = constant$
	Ideal Gas Law
	PV = nRT
	P. moles.
	$\frac{P_A}{P_{TOTAL}} = \frac{moles_A}{moles_{TOTAL}}$
	IOIAL IOIAL
	$KE = \frac{1}{2} \text{ m} \cdot \text{v}^2$
	$\frac{\text{Velocity A}}{\text{Velocity B}} = \sqrt{\frac{\text{M.W. B}}{\text{M.W. A}}}$
	Velocity B = $\sqrt{M.W.A}$
	ם.סו א.כו ע.או ע.כו מ.גו ע.וו א.ט

1.C 2.B 3.A 4.C 5.B 6.D 7.B 8.D 9.C 10.A 11.D 12.B 13.D 14.D 15.A 16.B