IMF's, Liquids, & Solids

STUDY	LIST From Paul Groves
I can Types of Solids □ classify any substance into the four solids: ○ molecular	predict the strength of London dispersion forces (LDF) in terms of the "polarizable electron clouds" available in the two molecules.
metalsioniccovalent network	predict the strength of dipole-dipole interactions based on the polarity of the bonds in two polar molecules
☐ list the eight examples of covalent network solids ☐ determine whether a molecule is polar or	explain why H-O, H-N, and H-F are placed in a separate category called "hydrogen bonding" (i.e., why N, O, and F).
nonpolar from its formula & structure explain that acids (e.g. HCl) are a molecular substance (not an ionic substance) even	explain that during a phase change, the IMF's are broken, not the <i>intra</i> -molecular bonds.
though they form ions in solution Bonding and Properties	predict the miscibility of two substances based on the similarity or differences between their IMF's.
describe the bonding in:	explain that the stronger a molecule's IMF, the more it deviates from ideal behavior.
o covalent network solids	Vapor Pressure & Boiling
list and explain the properties of the above three types of substances, including	explain that equilibrium vapor pressure is associated with the liquid-vapor dynamic equilibrium measured in a closed container
 brittleness or malleability give examples of each of the types of solids use lattice energy ideas to compare the strength of bonding in various ion pairs 	state that temperature is the only variable that changes the vapor pressure of any liquid (not the amount of liquid, pressure above the liquid, or volume of the closed container)
strength of boliting in various fon pairs	infer the relative strength of IMF's of two liquids given their vapor pressures
Intermolecular Forces of Attraction ☐ make the distinction between inter- and intramolecular forces of attraction such as in a	explain that a liquid will boil when its vapor pressure matches the pressure above the liquid
gaseous sample of HCl. list and describe the IMF's associated with polar molecules, non-polar molecules, and	explain that a liquid can be made to boil by heating the liquid or by reducing the pressure above the liquid
noble gases London dispersion forces (LDF) dipole-dipole attractions hydrogen bonding 	define "normal boiling point" as the temperature at which a liquid will boil at sea level (1 atm = 760 mmHg = 101.3 kPa, etc.)
state how the strength of IMF is related to MP, BP, ΔH_{vap} , ΔH_{fus} , & vapor pressure	explain that vapor pressure is a result of the balance between the kinetic energy of the molecules and the strength of their IMF's.

Phase Changes

- list the names of the phase changes between (s), (l), and (g)
- sketch a "phase diagram" for a substance and label
 - the three phases
 - o the triple point
 - the critical point

explain why water's solid-liquid line has a negative slope in terms of the density of liquid and solid water.

 \Box calculate the energy involved in a phase change given values for ΔH_{vap} and ΔH_{fus} .

list the type of energy change (kinetic or potential) that occurs during each section of a heating curve. Label the phase(s) present in each section.

Surface Tension

explain that a non-surface molecule is more stable (lower potential energy) than a surface molecule because it has the maximum number of neighbors. Liquids tend to minimize the number of high-energy surface molecules. This is called surface tension. The shape with the minimum surface area for its volume is a sphere.

