Dougherty Valley HS AP Chemistry IMF Quick Check #1			S-62
Name:	Date:	Period:	Seat #:

Try these problems. If you can DO them, check the box (\square). If you CANNOT do them, write some notes TO YOURSELF about what you need to study to succeed at these problems.

Indicate the **strongest** IMF holding together crystals of the following substances:

0		London	Dipole-dipole	Hydrogen	Metallic	Ionic	Covalent
		forces	attractions	bonding	bonding	bonding	bonding
1.	KCl						
2.	IF ₃						
3.	HF						
4.	AsH ₃						
5.	Br ₂						
6.	Pt						
7.	NaOH						
8.	H ₂ S						
9.	Ne						
10.	SiO ₂						

Describe the interparticle forces at work in the following:

с.

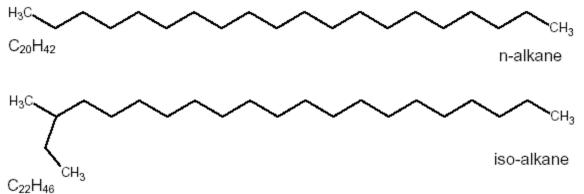
i.

within a water molecule H₂O a. _____ b.

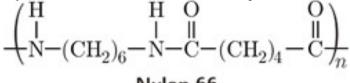
- in a crystal of the salt NaCl
- in a solution of potassium nitrate KNO3
- in diamond _____ d.

e. f.

in a fiber of nylon

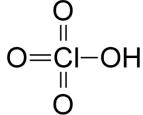

- in liquid butane
- **between** water molecules in ice _____ g.
- between the two strands in the double helix of DNA _____ h.
 - i. in paraffin wax
 - between the molecules of carbon dioxide CO₂ in dry ice
- between the molecules of HCl in liquid HCl _____ k.
 - in tungsten metal 1.
 - in a solution of perchloric acid _____ m.

A. n	nolecular solid	B. metal	C. ionic solid	D.	covalent/network solid
------	-----------------	----------	----------------	----	------------------------

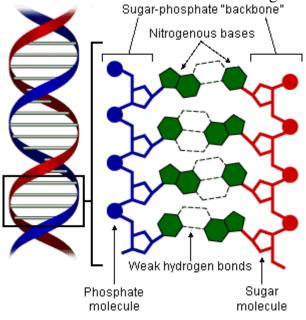

☐ Valence electrons delo	calized over huge	arrays of atoms. What kind of	solid is described by this
property?			
A. molecular solid	B. metal	C. ionic solid	D. covalent/network solid

Elemental boron is extremely hard (nearly as hard as diamond) and has a melting point of 2300°C. It is a poor conductor of electricity at room temperature. What kind of solid would you expect for boron based on these properties? ____

Notes about structures that are considered "common knowledge" for AP chemistry students: **Paraffin wax** is made up of long carbon chains. The Alkanes area also called the Paraffins.



Nylon is a polymer made up of long chains of carbons with amine groups and C=O groups. The "*n*" means that this pattern of atoms is repeated thousands of times to make nylon fibers.



Perchloric acid is based on the perchlorate ion (ClO_4) . This is an "oxoacid" where the H atom bonds to one of the oxygen atoms.

DNA has a familiar structure, but we are interested in how the two sides of DNA are connected to each other. Note that there are some N-H bonds and O-H bonds in the "Nitrogenous bases".

