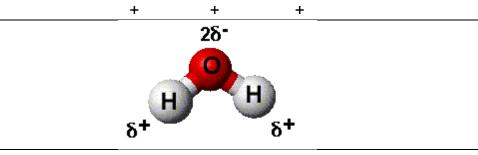
Chapter 8 – Bonding: General Concepts


- 1. Types of Chemical Bonds
 - a. Ionic Bonding
 - i. Electrons are transferred
 - ii. Metals reaction with non-metals
 - iii. Ions paired to have lower energy (greater stability) than separated ions
 - b. Coulombs Law

$$E = 2.31x 10^{-19} J \cdot nm(\frac{Q_1 Q_2}{r})$$

- a. E = Energy in Joules
- b. Q_1 and Q_2 are numerical ion charges
- c. r= distance between ion center in nanometers
- d. Negative sign indicates an attractive force
- c. Bond Length
 - i. Distance at which the system energy is at a minimum
 - ii. Forces at work
 - 1. Attractive forces (proton-electron)
 - 2. Repulsion forces (electron-electron, proton-proton)
 - iii. Energy is given off (bond energy) when two atoms achieve greater stability together than apart
- d. Covalent Bonds
 - i. Electrons are shared by nuclei
 - ii. Pure covalent (non-polar covalent)
 - 1. Electrons are shared evenly
 - iii. Polar covalent bonds
 - 1. Electrons are shared unevenly
 - 2. Atoms end up with fractional charges
 - a. (1) δ^+ and δ^-
- 2. Electronegativity
 - a. Electronegativity
 - i. The ability of an atom in a molecule to attract shared electrons to itself
 - b. Electronegativity Trends
 - i. Electronegativity generally increases across a period (why?)
 - ii. Electronegativity generally decrease within a family (why?)
 - c. Characterizing bonds
 - i. Greater electronegativity difference between two elements means less covalent character and greater ionic character
 - ii. We will not use subtraction of electronegativities to determine ionic character

Any compound that conducts an electric current when melted is an ionic compound.

- 3. Bond Polarity and Dipole Moments
 - a. Dipolar Molecules
 - i. Molecules with a somewhat negative end and a somewhat positive end (a dipole moment)
 - ii. Molecules with preferential orientation in an electric field
 - iii. All diatomic molecules with a polar covalent bond are dipolar

- b. Molecules with Polar Bonds but no Dipole Moment
 - i. Linear, radial or tetrahedral symmetry of charge distribution
 - 1. CO2 linear
 - 2. CCl4 tetrahedral
 - ii. See table 8.6 in your text
- 4. Ions: Electron Configurations and Sizes
 - a. Bonding and Noble Gas Electron Configurations
 - i. Ionic bonds
 - 1. Electrons are transferred until each species attains a noble gas electron configuration
 - ii. Covalent bonds
 - 1. Electrons are shared in order to complete the valence configurations of both atoms
 - b. Predicting Formulas of Ionic Compounds
 - i. Placement of elements on the periodic table suggests how many electrons are lost or gained to achieve a noble-gas configuration
 - 1. Group I loses one electron, Group II loses two, Group VI gains two, Group VII gains one...
 - ii. Formulas for compounds are balanced so that the total positive ionic charge is equal to the total negative ionic charge

$$Al_2^{3+}O_3^{2-}$$

TOTAL POSITIVE = +6
TOTAL NEGATIVE = -6

- c. Sizes of lons
 - i. Anions are larger than the parent atom
 - ii. Cations are smaller than the parent atom
 - iii. Ion size increases within a family
 - iv. Isoelectronic ions
 - 1. Ions with the same number of electrons
 - 2. Size decreases as the nuclear charge Z increases
- 5. Formation of Binary Ionic Compounds
 - a. Lattice Energy
 - i. The change in energy that takes place when separated gaseous ions are packed together to form an ionic solid M+ (g) + X- (g) → MX (s)
 - ii. Energy change is exothermic (negative sign)

Process	Description	Energy Change (kJ)
$Li(s) \rightarrow Li(g)$	Sublimation energy	161
Li(g) →Li+(g) + e-	Ionization energy	520
$1/2F_2 \rightarrow F(g)$	Bond energy (1/2 mole)	77
$F(g) + e \rightarrow F(g)$	Electron affinity	-328
$Li_+(g) + F(g) \rightarrow LiF(s)$	Lattice energy	-1047
$Li(s) + \frac{1}{2} F_2(g) \rightarrow LiF(s)$	ΔH	-617

Example: Formation of lithium fluoride

iii. The formation of ionic compounds is endothermic until the formation of the lattice

iv. The lattice formed by alkali metals and halogens (1:1 ratio) is cubic except for cesium salts

b. Lattice Energy Calculations

i. Lattice Energy =
$$k(\frac{Q_1Q_2}{r})$$

- **a.** k = a proportionality constant dependent on the solid structure and the electron configuration
- **b.** Q1 and Q2 are charges on the ions
- **c.** r = shortest distance between centers of the cations and the anion
- ii. Lattice energy increases as the ionic charge increases and the distance between anions and cations decreases
- 6. Partial Ionic Character of Covalent Bonds
 - a. Calculating Percent Ionic Character

Percent Ionic Character = $\left(\frac{\text{measured dipole moment } f X - Y}{\text{calculated dipole moment of } X^+ - Y^-}\right)$

- b. Ionic vs. Covalent
 - i. lonic compounds generally have greater than 50% ionic character
 - ii. Ionic compounds generally have electronegativity differences greater than 1.6
 - iii. Percent ionic character is difficult to calculate for compounds containing polyatomic ions
- 7. The Covalent Chemical Bond: A Model
 - a. Strengths of the Bond Model
 - i. Associates guantities of energy with the formation of bonds between elements
 - ii. Allows the drawing of structures showing the spatial relationship between atoms in a molecule
 - iii. Provides a visual tool to understanding chemical structure
 - **b.** Weaknesses of the Bond Model
 - i. Bonds are not actual physical structures
 - ii. Bonds can not adequately explain some phenomena
 - 1. Resonance
- 8. Covalent Bond Energies and Chemical Reactions
 - a. Average Bond Energies

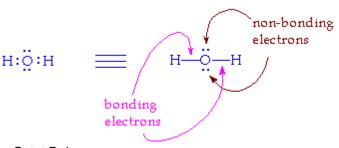
Process	Energy Required (kJ/mol)
$CH_4(g) \rightarrow CH_3(g) + H(g)$	435
$CH_3(g) \rightarrow CH_2(g) + H(g)$	453
$CH_2(g) \rightarrow CH(g) + H(g)$	425
$CH(g) \rightarrow C(g) + H(g)$	339
Total	1652
Average	413

- **b.** Multiple Bonds
 - i. Single bonds 1 pair of shared electrons
 - ii. Double bonds 2 pairs of shared electrons
 - iii. Triple bonds 3 pairs of shared electrons

Multiple Bonds, Average Energy (kJ/mole)				
C=C	614	N=O	607	
C≡C	839	N=N	418	
O=0	495	N≡N	941	
C=O	745	C≡N	891	
C≡O	1072	C=N	615	

iv. As the number of shared electrons increases, the bond length shortens

c. Bond Energy and Enthalpy (using bond energy to calculate approximate energies for rxns)


- i. $\Delta H = sum of the energies required to break old bonds(endothermic)$

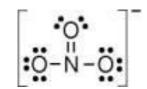
sum of the energies released in forming new bonds (exothermic)

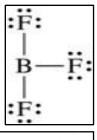
- ii. $\Delta H = \sum D(Bonds \ broken) \sum D(Bonds \ formed)$
 - **1.** *D* always has a positive sign
- 9. The Localized Electron Bonding Model
 - **a.** Lone electron pairs
 - i. Electrons localized on an atom (unshared)
 - **b.** Bonding electron pairs
 - i. Electrons found in the space between atoms (shared pairs)
 - c. Localized Electron Model
 - i. "A molecule is composed of atoms that are bound together by sharing pairs of electrons using the atomic orbitals of the bound atoms
 - d. Derivations of the Localized Model
 - i. Valence electron arrangement using Lewis structures
 - ii. Prediction of molecular geometry using VSEPR (valence shell electron pair repulsion)
 - iii. Description of the type of atomic orbitals used to share or hold lone pairs of electrons

10. Lewis Structures

- a. Electrons and Stability
 - i. "the most important requirement for the formation of a stable compound is that the atoms achieve noble gas configurations
 - ii. Duet rule
 - **1.** Hydrogen, lithium, beryllium, and boron form stable molecules when they share two electrons (helium configuration)
 - iii. Octet Rule
 - 1. Elements carbon and beyond form stable molecules when they are surrounded by eight electrons
- b. Writing Lewis Structures
 - i. Rules
 - 1. Add up the TOTAL number of valence electrons from all atoms
 - 2. Use a pair of electrons to form a bond between each pair of bound atoms. Lines instead of dots are used to indicate each pair of bonding electrons
 - **3.** Arrange the remaining atoms to satisfy the duet rule for hydrogen and the octet rule for the second row elements

11. Exceptions to the Octet Rule


- a. Boron Trifluoride
 - i. Note that boron only has six electrons around it
 - ii. BF3 is electron deficient and acts as a Lewis acid (electron pair acceptor)
 - iii. Boron often forms molecules that obey the octet rule
- b. Sulfur Hexafluoride
 - i. Note that sulfur has 12 electrons around it, exceeding the octet rule
 - ii. Sulfur hexafluoride is very stable
 - iii. SF₆ fills the 3s and 3p orbitals with 8 of the valence electrons, and places the other 4 in the higher energy 3d orbital
- c. More About the Octet Rule
 - i. Second row elements C, N, O and F should always obey the octet rule
 - ii. B and Be (second row) often have fewer then eight electrons around them, and
 - form electron deficient, highly reactive molecules
 - iii. Second row elements never exceed the octet rule
 - $\ensuremath{\text{iv.}}$ Third row and heavier elements often satisfy (or exceed) the octet rule
 - v. Satisfy the octet rule first. If extra electrons remain, place them on elements having available d orbitals
 - 1. When necessary to exceed the octet rule for one of several third row elements, assume that the extra electrons be placed on the central atom


12. Resonance

- a. Nitrate ion
 - i. Experiments show that all N-O bonds are equal
 - ii. A single Lewis structure cannot represent the nitrate ion
 - iii. A resonance structure is drawn by writing the three variant structures, connected by a double-headed arrow
- b. Resonance
 - i. When more than one valid Lewis structure can be written for a particular molecule
 - ii. The actual structure is an average of the depicted resonance structures
- c. Odd Electron Molecules
 - i. Molecules in which there is not an even number of electrons
 - ii. Does not fit localized electron model
- d. Formal Charge
 - i. Number of valence electrons on the free atom

<u>minu</u>s

- Number of valence electrons assigned to the atom in the molecule
- ii. Lone pair (unshared) electrons belong completely to the atom in question

- 1. Shared electrons are divided equally between the sharing atoms
- iii. The sum of the formal charges of all atoms in a given molecule or ion must equal the overall charge on that species
 - 1. If the charge on an ion is -2, the sum of the formal charges must be -2
- e. Using Formal Charge to Evaluate Lewis Structures
 - i. If nonequivalent Lewis structures exist for a species, those with the formal charges closest to zero, and with negative formal charges on the most electronegative atoms are considered the best candidates
 - ii. Only experimental evidence can conclusively determine the correct bonding situation in a molecule
- 13. Molecular Structure: The VSEPR Model
 - a. Valence Shell Electron Pair Repulsion (VSEPR)
 - i. The structure around a given atom is determined principally by minimizing electron-pair repulsions
 - ii. Non-bonding and bonding electron pairs will be as far apart as possible

Arrangement of Electron Pairs Around an Atom Yielding Minimum Repulsion				
# of Electron Pairs	Shape	Arrangement of Electron Pairs		
2	Linear	Bond Angle = 180 degrees		
3	Trigonal Planar	Bond Angle = 120 degrees		
4	Tetrahedral	Bond Angle = 109.5 degrees		
5	Trigonal bipyramidal	Bond Angles = 90 degrees and 120 degrees		
6	Octahedral	Bond Angles = 90 degrees		

b. Effect on unshared electron pairs

i. The ideal tetrahedral angle is 109.5°

Comparison of Tetrahedral Bond Angles					
Compound	Structure	Angle between Hydrogens			
Methane		109.5°			
Ammonia		107°			
Water		104.5°			

- ii. Lone (unshared) electron pairs require more room than bonding pairs (they have greater repulsive forces) and tend to compress the angles between bonding pairs
- iii. Lone pairs do not cause distortion when bond angles are 120° or greater
- c. VSEPR and Multiple Bonds
 - i. For the VSEPR model, multiple bonds count as one effective electron pair
 - ii. When a molecule exhibits resonance, ANY of the resonance structures can be used to predict the molecular structure using the VSEPR model
- d. Molecules Containing No Single Central Atom
 - i. Apply the principal of distancing shared and unshared electron pairs
 - ii. Look at real 3-dimensional, rotatable models to develop predictive skills
- e. How Well Does VSEPR Work?
 - i. For non-ionic compounds, VSEPR works in most cases