

- 1. Which of the following processes requires a chemical change?
 - (A) Separating a sample of saltwater into water and salt
 - (B) Separating a sample of water into hydrogen and oxygen
 - (C) Separating a sample of air into nitrogen, oxygen, and other gases
 - (D) Separating a sample of green ink into a blue component and a yellow component

Skip #2

3. How many protons, neutrons, and electrons are present in the following ion? ⁵⁶Fe³⁺

	Protons	Neutrons	Electrons		
(A)	26	30	23		
(B)	26	26	29		
(C)	26	30	29		
(D)	26	56	23		

4. Which of the following calculations is set up correctly to determine the volume (in mL) of aluminum (density = 2.7 g/mL) of a pure sample of Al that contains 2.0 x 10²⁴ atoms?

(A)
$$\frac{(2.0 \times 10^{24})(26.98)(2.7)}{(6.02 \times 10^{23})}$$

(C)
$$\frac{(2.0 \times 10^{24})(2.7)}{(6.02 \times 10^{23})(26.98)}$$

(B)
$$\frac{(2.0 \times 10^{24})}{(6.02 \times 10^{23})(26.98)(2.}$$

(D)
$$\frac{(2.0\times10^{24})(26.98)}{(6.02\times10^{23})(2.7)}$$

- 5. The mass spectrum of element X is presented in the diagram above. Based on the spectrum, which of the following can be concluded about element X?
 - (A) X is a transition metal, and each peak represents an oxidation state of the metal.
 - (B) X contains five electron sublevels.
 - (C) The atomic mass of X is 90.
 - (D) The atomic mass of X is between 90 and 92.

Compound	Empirical Formula	Mass of Carbon	Mass of Hydrogen		
X CH		3.0 g	0.25 g		
		600	100		

- 6. Based on the information shown in the table above, the empirical formula for Compound Y is
 - (A) C₂H

Name: __

- (B) CH₂
- (C) CH₃
- (D) CH₄
- 7. The element boron has two naturally occurring isotopes: ¹⁰B and ¹¹B. Which of the following represents the most probable data for the relative abundances of these two isotopes?

	Abundance of boron-10	Abundance of boron-11
(A)	20%	80%
(B)	40%	60%
(C)	50%	50%
(D)	80%	20%

- 8. What is the empirical formula of an oxide of chromium that is 48 percent oxygen by mass?
 - (A) CrO
 - (B) CrO₂
 - (C) CrO₃
 - (D) Cr₂O₃

mass of crucible and lid	36.0 g
mass of crucible, lid, and metal	41.0 g
mass of crucible, lid, and metal oxide product	43.0 g

- A metallic element is heated in air until the metal reacts completely with oxygen. Given the information in the table above, the most probable formula for the metal oxide product is
 - (A) MgO
 - (B) CaO
 - (C) K₂O
 - (D) SnO₂
- 10. According to the information in the table at right, a 1.00 g sample of which of the following contains the greatest mass of oxygen?
 - (A) Na₂O
 - (B) MgO
 - (C) K₂O
 - (D) CaO

Compound	Molar Mass (grams)				
Na ₂ O	62.0				
MgO	40.3				
K ₂ O	94.2				
CaO	56.1				

(B) 32 amu		(A)	hydro	ogen		8.5 g			
(C) 64 amu		(B)	hydro	ogen		10. g			
(D) 128 amu		(C)	nitro	gen		8.5 g			
12. A sample of a compound that contains only the elements C, H, and N is completely burned	in	(D)	nitro	gen		10. g			
O ₂ to produce 44.0 g of CO ₂ , 45.0 g of H ₂ O, and some NO ₂ . A possible empirical formula of the compound is	CHAPTERS 1-3 P	RACTICE TES	ST .			G	⇔ ←Linke	d at 24:13	
'	FREE RESPONSE	FREE RESPONSE (CALCULATOR IS ALLOWED)							
(A) CH ₂ N	1. Fill in the tabl	Fill in the table with the missing information. Each nuclear symbol should contain the ma							
(B) CH ₅ N	number and t	number and the charge.							
(C) C ₂ H ₅ N		Nuclear Sy	mbol CI	harge	Protons	Neutrons	Electrons]	
(D) C ₃ H ₃ N ₂		¹¹⁵ ln ³⁻	+						
13. A sample of solid potassium chlorate (KClO ₃ , FW = 122.6) was placed in a test tube and heated strongly in the presence of a catalyst until it completely decomposed. The products the decomposition reaction are potassium chloride and oxygen gas (which escaped from the composition of the com		32 p 3-							
test tube). If the mass of KCIO ₃ used in the experiment was 12.26 g, how many grams of oxygen gas were produced in this experiment?					35	45	36		
(A) 2.4 g					56	81	54		
(B) 3.2 g								1	
(C) 4.8 g	2. For each name,	For each name, write the correct formula. Indicate if the substance is ionic or covalent.							
(D) 6.4 g	Chemic	Chemical Formula		Name				lonic (I) or	
PCI ₅ + 4 H ₂ O → 5 HCI + H ₃ PO ₄								ent (C)?	
the reaction represented above, how many molecules of PCI ₅ are required to react		cobalt(II) carbonate							
completely with 18 grams of water?		barium chlorate							
(A) 1.5 x 10 ²³					dinitrogen	trioxide			
(B) 3.0 x 10 ²³				ar	mmonium p	hosphate			
(C) 6.0 x 10 ²³					sulfur tetra	fluoride			
(D) 2.4 x 10 ²⁴	3. For each formula	a. write the cor	e correct name. Indicate if the substance is ionic or covalent.						
								ic (I)	
	Chemical Formula	Formula Name			or ent (C)?				
15. Equal masses of K(s) and Cl2(g) are combined together and allowed to react, producing KCl(s). The reaction proceeds until either one or both of the reactants have been completely	Cl ₂ O ₇					Covan	ant (c).		
consumed. At that point, what remains in the reaction vessel?	Mg(NO ₃) ₂	,							
(A) KCI only	K ₂ S								
(B) KCl and K only									
(C) KCl and Cl ₂ only	PBr₅								
(D) KCl, K, and Cl ₂	Cu(C ₂ H ₃ O ₂	2)2							

 $7.0 g of N_2$?

11. The empirical formula of a compound is XF₄. This compound contains 1.6 grams of X atoms

for every 3.8 grams of fluorine atoms. The atomic mass of element X is most likely to be

(A) 16 amu

16. What is the limiting reactant and the theoretical yield of ammonia when 3.0 g of H₂ reacts with

Limiting Reactant | Theoretical Yield of NH₃

A chemist needs to determine the empirical formula of an unknown compound. This compound contains the elements C, H, N, and O.	 In a laboratory experiment, a student obtained a sample of barium hydroxide hydrate. The number of water molecules in the hydrate formula was unknown. The formula for this compound can be written as Ba(OH)₂•xH₂O, where x indicates the number of moles of water
A sample of the unknown compound with a mass of 3.8625 g was burned in excess oxygen. The reaction produced 6.8618 g of $CO_2(g)$ and 1.7557 g of $H_2O(g)$.	per mole of Ba(OH) ₂ .
(a) Determine the mass, in grams, of carbon in the 3.8625 g sample of the compound.	A sample of this hydrate was heated strongly in a crucible, in order to drive off the water of hydration. The anhydrous Ba(OH) ₂ salt was then treated with excess sodium sulfate solution. This resulted in the formation of a white precipitate, barium sulfate. The precipitate was filtered from the solution, dried and weighed. The data table below indicates measurements recorded
(b) Determine the mass, in grams, of hydrogen in the 3.8625 g sample of the compound.	in this experiment.
(c) When the compound is analyzed for nitrogen content only, the mass percent of nitrogen is found to be 14.14 percent. Determine the mass, in grams, of nitrogen in the 3.8625 g sample of the compound.	Mass of clean, dry crucible Mass of crucible + Ba(OH) ₂ •xH ₂ O (before heating) 66.081 g Mass of white precipitate, BaSO ₄ 3.126 g (a) Calculate the mass of the hydrate sample Ba(OH) ₂ •xH ₂ O (before heating).
(d) Determine the mass, in grams, of oxygen in the 3.8625 g sample of the compound.	
(e) Determine the empirical formula of the compound.	(b) Write a balanced chemical equation for the reaction between barium hydroxide and sodium sulfate.
(f) In another experiment, it was determined that a 8.65 -g sample of this compound contained 1.75×10^{22} molecules. Calculate the molar mass of this compound.	
(g) Determine the molecular formula of this compound. Justify your answer.	
$2 C_5H_{12}O + 15 O_2 \rightarrow 10 CO_2 + 12 H_2O$	(c) The mass of the white precipitate was 3.126 g. Calculate the number of moles of this precipitate.
Liquid pentanol undergoes complete combustion in the presence of oxygen gas according to the equation above. In a certain experiment, 7.35 mL of pentanol (density = 0.814 g mL $^{-1}$) is added to 16.0 L of oxygen gas at 150°C. (density of O $_2$ @ 150°C = 0.922 g L $^{-1}$).	
(a) Calculate the following quantities.	(d) Calculate the mass of the application self. Re(OLI)
(i) moles of pentanol	(d) Calculate the mass of the anhydrous salt, Ba(OH) ₂ .
(ii) moles of oxygen gas	
(b) Identify the limiting reactant in this experiment. Justify your answer.	(e) Calculate the mass of water that was lost in the heating process.
(c) Calculate the theoretical yield of carbon dioxide (in grams) that could be produced from this experiment.	(f) Calculate the value of x for the sample of Ba(OH) ₂ • x H ₂ O.
(d) If the mass of carbon dioxide recovered from this experiment is 11.0 g, calculate the percent yield from this experiment.	

5.