Topics 2.5 – 2.7: MCQ Practice

1. Which of the following is a valid Lewis diagram for the molecule C_3H_6 ?

2. Which of the following is a valid Lewis diagram for the polyatomic ion NO_2^+ ?

- 3. Based on formal charges, which of the following Lewis diagrams is the best representation of the bonding in the molecule NOC1?
 - (A) $\ddot{\mathbf{O}}$ = $\ddot{\mathbf{C}}\mathbf{i}$ = $\ddot{\mathbf{N}}$ (C) $\ddot{\mathbf{O}}$ = $\ddot{\mathbf{N}}$ $\ddot{\mathbf{C}}\mathbf{i}$
 - (B) $\ddot{\mathbf{O}}$ $\ddot{\mathbf{O}}$ $\ddot{\mathbf{O}}$ $\ddot{\mathbf{O}}$ $\ddot{\mathbf{O}}$ $\ddot{\mathbf{O}}$ $\ddot{\mathbf{O}}$ $\ddot{\mathbf{O}}$

4. Two proposed Lewis diagrams for the OCN⁻ ion are shown above. Which of the following indicates the more favorable representation of the bonding in the OCN⁻ ion and provides the correct justification?

	More Favorable Representation	Justification
(A)	Diagram 1	Each atom in the Lewis diagram is assigned a formal charge of zero.
(B)	Diagram 1	It places the negative formal charge on the most electronegative atom.
(C)	Diagram 2	Each atom in the Lewis diagram is assigned a formal charge of zero.
(D)	Diagram 2	Each bond in the Lewis diagram has the same bond order.

0 - 0 - 0

5. The connectivity between the oxygen atoms in the O₃ molecule is shown in the diagram above. Which of the following best describes the electron arrangement in the O₃ molecule and the bond orders of the two oxygen-oxygen bonds?

	Electron Arrangement	Bond Orders of the Two Oxygen-Oxygen Bonds
(A)	O ₃ can be described with a single Lewis structure.	1.0 and 2.0
(B)	O ₃ can be described with a single Lewis structure.	1.5 and 1.5
(C)	O ₃ can be described as an average of two equivalent Lewis structures.	1.0 and 2.0
(D)	O ₃ can be described as an average of two equivalent Lewis structures.	1.5 and 1.5

6. The two carbon-oxygen bonds in the acetate ion, C₂H₃O₂⁻, have the same length. Which of the following sets of Lewis diagrams best supports the explanation for this observation?

7. Which of the following Lewis electron-dot diagrams represents the molecule that contains the smallest bond angle?

- 8. The BF₃ molecule is nonpolar, whereas the NF₃ molecule is polar. Which of the following statements accounts for the difference in polarity of the two molecules?
 - (A) The NF₃ molecule consists of N=F double bonds, whereas the BF₃ molecule consists of B-F single bonds.
 - (B) N–F bonds are polar, whereas B–F bonds are nonpolar.
 - (C) NF₃ is an ionic compound, whereas BF₃ is a molecular compound.
 - (D) Unlike BF₃, NF₃ has nonplanar geometry due to an unshared pair of electrons on the N atom.

9. Which of the following indicates the correct molecular geometry and polarity for the molecule chlorine trifluoride, ClF₃?

		Molecular Geometry	Is the Molecule Polar or Nonpolar?
	(A)	T-shaped	polar
	(B)	T-shaped	nonpolar
	(C)	trigonal planar	polar
	(D)	trigonal planar	nonpolar

$$H - C = C - H + H_2 \xrightarrow{catalyst} H - C = C + H_1$$

10. In the reaction represented by the equation above, which of the following correctly identifies the hybridization of the C atoms before and after the reaction occurs?

	Before Reaction	After Reaction
(A)	sp	sp^2
(B)	sp	sp ³
(C)	sp^2	sp ³
(D)	sp ³	sp ³