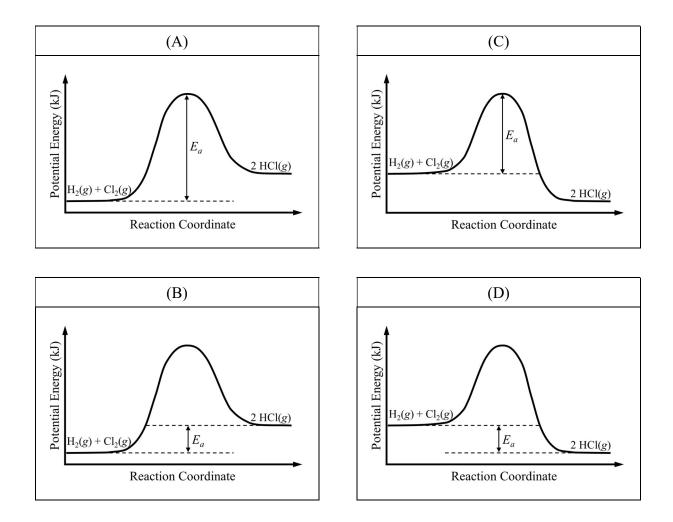

Step 1: $NO(g) + Cl_2(g) \rightarrow NOCl_2(g)$ Step 2: $NOCl_2(g) + NO(g) \rightarrow 2 NOCl(g)$

Overall reaction: $2 \operatorname{NO}(g) + \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{NOCl}(g)$

- 1. A proposed mechanism for a chemical reaction is represented above. Which of the following gives the correct expression for the rate law for Step 1 of this mechanism?
 - (A) rate = k[NO][Cl₂]
 - (B) rate = k[NOCl₂]
 - (C) rate = k[NOCl₂][NO]
 - (D) rate = $k[NO]^2[Cl_2]$

$$NO_3(g) + CO(g) \rightarrow NO_2(g) + CO_2(g)$$


2. The elementary reaction between $NO_3(g)$ and CO(g) is represented by the equation above. Which of the following orientations of collision between $NO_3(g)$ and CO(g) is most likely to be effective?

- 3. Which of the following best helps explain why an increase in temperature increases the rate of a chemical reaction?
 - (A) At higher temperatures, reactions have a lower activation energy.
 - (B) At higher temperatures, reactions have a higher activation energy.
 - (C) At higher temperatures, every collision results in the formation of product.
 - (D) At higher temperatures, high-energy collisions happen more frequently.

 $H_2(g) + Cl_2(g) \rightarrow 2 HCl(g) \quad \Delta H = -185 \text{ kJ/mol}_{rxn}$

4. Hydrogen chloride, HCl(g), is formed from the elements hydrogen and chlorine as represented by the equation above. Which of the following diagrams shows the correctly labeled activation energy, E_a , for the reaction between $H_2(g)$ and $Cl_2(g)$ to form HCl(g)?

$$2 X(g) + Y_2(g) \rightarrow 2 XY(g)$$

Mechanism 1	Mechanism 2
Step 1: $X(g) + X(g) \rightarrow X_2(g)$ slow	Step 1: $X(g) + Y_2(g) \rightarrow XY_2(g)$ slow
Step 2: $X_2(g) + Y_2(g) \rightarrow 2 XY(g)$ fast	Step 2: $XY_2(g) + X(g) \rightarrow 2 XY(g)$ fast

5. The two mechanisms in the table below have been proposed for the reaction represented above.

Which of the following observations would support mechanism 1 but not mechanism 2?

- (A) The reaction rate is independent of [X].
- (B) The reaction rate is independent of $[Y_2]$.
- (C) The reaction is exothermic.
- (D) The reaction is second order overall.

6. The following reaction mechanism is proposed for the decomposition of H_2O_2 .

 $H_2O_2(aq) + I^-(aq) \rightarrow H_2O(l) + OI^-(aq)$

 $H_2O_2(aq) + OI^-(aq) \rightarrow H_2O(l) + O_2(g) + I^-(aq)$

 $2 \operatorname{H}_2O_2(aq) \rightarrow 2 \operatorname{H}_2O(l) + O_2(g)$

Which of the following choices has correctly identified a species that behaves as a catalyst <u>and</u> a species that behaves as an intermediate in the proposed mechanism?

	Species that Behaves as a Catalyst	Species that Behaves as an Intermediate
(A)	I⁻	H_2O
(B)	OI⁻	H ₂ O
(C)	I	OI⁻
(D)	OI⁻	I

- 7. The rate law for the reaction represented by the equation above is rate = k [NO₂][F₂]. Which of the following could be the first elementary step of a two-step mechanism for the reaction if the first step is slow and the second step is fast?
 - (A) $F_2(g) \to 2 F(g)$ (B) $NO_2(g) + F_2(g) \to NO_2F(g) + F(g)$ (C) $NO_2(g) + F(g) \to NO_2F(g)$ (D) $2 NO_2(g) + F_2(g) \to 2 NO_2F(g)$

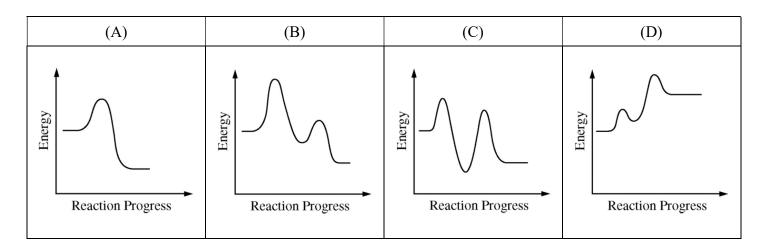
```
X_2 + Y_2 \rightarrow X_2 Y_2
rate = k[X_2]
```

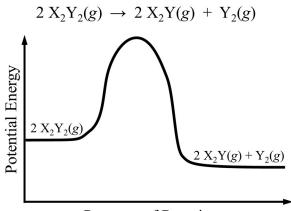
8. A reaction and its experimentally determined rate law are represented above. A chemist proposes two different possible mechanisms for the reaction, which are given below.

Mechanism 1	Mechanism 2
$X_2 \rightarrow 2 X$ slow	$X_2 \rightarrow 2 X$ slow
$X + Y_2 \rightarrow XY_2$ fast	$X + Y_2 \rightarrow XY + Y fast$
$X + XY_2 \rightarrow X_2Y_2$ fast	$X + XY \rightarrow X_2Y$ fast
	$X_2Y + Y \rightarrow X_2Y_2$ fast

Based on the information above, which of the following is true?

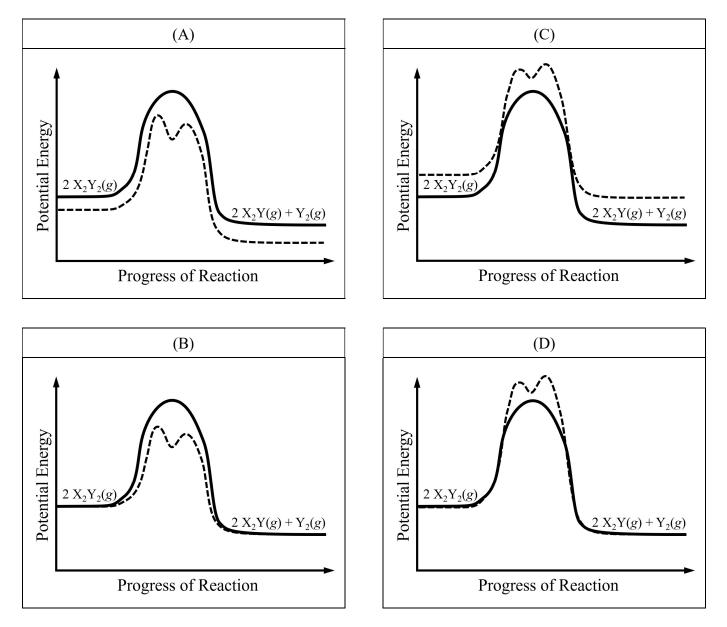
- (A) Only mechanism 1 is consistent with the rate law.
- (B) Only mechanism 2 is consistent with the rate law.
- (C) Both mechanism 1 and mechanism 2 are consistent with the rate law.
- (D) Neither mechanism 1 nor mechanism 2 is consistent with the rate law.


- $2 D_2(g) + 2 QX(g) \rightarrow Q_2(g) + 2 D_2X(g)$
- 9. The experimental rate law for the reaction represented above is rate = $k[D_2][QX]^2$. Which of the following proposed mechanisms is consistent with the rate law?


(A)	(C)
Step 1: $2 QX \rightarrow Q_2 + X_2$ slow	Step 1: $2 QX \rightarrow Q_2X_2$ fast
Step 2: $D_2 + X_2 \rightarrow D_2 X_2$ fast	Step 2: $D_2 + Q_2X_2 \rightleftharpoons Q_2X + D_2X$ fast
Step 3: $D_2 + D_2X_2 \rightarrow 2 D_2X$ fast	Step 3: $D_2 + Q_2X \rightarrow Q_2 + D_2X$ slow
(B)	(D)
Step 1: $2 QX \rightarrow Q_2 + X_2$ fast	Step 1: $2 QX \rightleftharpoons Q_2X_2$ fast
Step 2: $D_2 + X_2 \rightleftharpoons D_2 X_2$ fast	Step 2: $D_2 + Q_2X_2 \rightarrow Q_2X + D_2X$ slow
Step 3: $D_2 + D_2X_2 \rightarrow 2 D_2X$ slow	Step 3: $D_2 + Q_2X \rightarrow Q_2 + D_2X$ fast

10. When free Cl(g) atoms encounter $O_3(g)$ molecules in the upper atmosphere, the following reaction mechanism is proposed to occur.

 $Cl(g) + O_3(g) \rightarrow ClO(g) + O_2(g) \quad slow step$ $ClO(g) + O_3(g) \rightarrow Cl(g) + 2 O_2(g) \quad fast step$ $2 O_3(g) \rightarrow 3 O_2(g) \quad overall \ reaction \quad \Delta H = -285 \text{ kJ/mol}_{rxn}$


Which of the following reaction energy profiles best corresponds to the proposed mechanism?

Progress of Reaction

11. The potential energy diagram for the uncatalyzed decomposition of $X_2Y_2(g)$ is shown above. Which of the following best represents the energy diagram for the decomposition of $X_2Y_2(g)$ in the presence of a suitable catalyst, shown as a dashed line?

