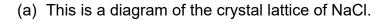
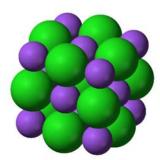
CHAPTER 8 - Basic Concepts of Chemical Bonding


Section 8.1 - Lewis Symbols and the Octet Rule

(a)	Complete the Lewis electron-dot symbols for each of the following elements by drawing the
	valence electrons in an appropriate manner.

Na Mg Al Si P S Cl Ar


(b) Write a definition of the octet rule. Try to avoid using the word "eight" in your definition.

Section 8.2 - Ionic Bonding

How can you identify which ion is Na⁺

and which ion is Cl⁻?

(b) Fill in the valence electrons on both sides of the chemical equation shown below. Draw an arrow to indicate the direction of electron transfer in this reaction. Draw the appropriate charges on the ions in the product.

- (c) Describe several properties of ionic substances.
- (d) Look at Figure 12.25 on page 481. Explain why ionic solids tend to be brittle and can be cleaved along well-defined planes when a stress is applied to them.

(e)	When sodium loses an electron, this is an (endothermic	exothermic) process.
	When chlorine gains an electron, this is an (endothermic	exothermic) process.

$$Na(g) \rightarrow Na^{+}(g) + e^{-} \Delta H = +496 \text{ kJ}$$
 $Cl(g) + e^{-} \rightarrow Cl^{-}(g)$
 $\Delta H = -349 \text{ kJ}$

(f) If we combine the two reactions shown above, we might think that the formation of sodium chloride is an endothermic process. Why is this view incorrect?

- (g) The principal reason ionic compounds are stable is the _____.

 This can be examined with Coulomb's law.
- (h) Define lattice energy.

(i) Label each of the following reactions with a ΔH value of either +788 kJ or -788 kJ.

$$NaCl(s) \rightarrow Na^+(g) + Cl^-(g)$$
 $\Delta H =$

$$Na^+(g) + Cl^-(g) \rightarrow NaCl(s)$$
 $\Delta H =$

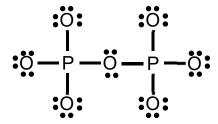
(j) Write Equation 8.4 on page 293.

For a given arrangement of ions, the lattice energy increases as the ______ increase and as their _____ decrease.

((K) EX	tplain wny MgO nas a nigher lattice e	nergy than NaF.						
((I) Explain why NaF has a higher lattice energy than KCI.								
(ithout consulting Table 8.2, arrange tl ergy: LiCl, KBr, and MgCl ₂ . Justify yo	hese three compounds in order of increasing lour answer.	attice					
(ven though lattice energy increases w Impounds that contain Na ²⁺ ions. Exp	rith increasing ionic charge, we never find ionic lain.	c					
(` '	rite a balanced equation for each step och substance.	o of the Born Haber cycle. Include phases of r	natter for					
Į	Step	Description	Balanced equation	ΔH°					
	1	sublimation of 1 mole of Na		108 kJ					
	2	formation of 1 mole of gaseous Cl atoms from ½ mole of gaseous Cl ₂ molecules		122 kJ					
	3	ionization energy for gaseous Na atoms		496 kJ					
	4	electron affinity for gaseous CI atoms		–349 kJ					
	5	formation of solid NaCl from gaseous sodium and chloride ions		lattice energy					

(p)	Write the balanced equation for the standard enthalpy of formation of sodium chloride. $\Delta H_f^o = -411 \text{ kJ}$
(q)	Show how the six reactions mentioned in parts (o) and (p) can be used to calculate the lattice energy for sodium chloride.
(r)	In forming an ion, a transition metal atom loses electrons from the subshell first.
	Then it will lose electrons from the subshell until it reaches the charge on the ion.
(s)	Write the electron configuration for each of the following ions:
	Fe ²⁺ Fe ³⁺
Sec	ction 8.3 – Covalent Bonding
(a)	The diagram at right represents the electron distribution in a molecule of hydrogen. Label the region on the diagram that represents the electrons involved in covalent bonding.
(b)	The atoms in the H ₂ molecule are held together because the two
	are attracted to the concentration of negative charge between them.
(c)	In writing Lewis structures, we usually show each electron pair as a line,
	and any electron pairs as dots.
(d)	Write the Lewis structure for the diatomic molecules N ₂ , O ₂ , and F ₂

(e) As a general rule, the length of the bond between two atoms _____ as the number of shared electron pairs increases.


<u>Section 8.4 – Bond Polarity and Electronegativity</u>

(a)	Bond polarity is a measure of how equally or unequally the electrons in any covalent bond are shared. Give two examples of each of the following bond types.
	nonpolar covalent bond
	polar covalent bond
	ionic bond
(b)	Define electronegativity.
(c)	If an atom has a large negative value for its electron affinity and a rather high value for
	its 1 st ionization energy, it should have a rather value for electronegativity.
(d)	The periodic trend is that electronegativity tends to from left to right
	across a period, and it tends to from top to bottom down a group.
(e)	Use electronegativity values to explain why the F–F bond is nonpolar and the H–F bond is polar.
(f)	Each of the following bonds is polar. Use the periodic trends in electronegativity to help you to label each atom with either a partial positive charge (δ +) or a partial negative charge (δ –).
	H—O N—C I—F Si—Br Cl—As
(g)	The greater the difference in electronegativity between two atoms, the
	their bond is.
(h)	If we use an arrow with a crossed end like this (+ →) to denote the charge separation in a
	polar bond, the arrow always points toward the atom that has a
	electronegativity value.
(i)	Whenever two electrical charges of equal magnitude but opposite sign are separated by a
	distance, a is established.
(j)	The quantitative measure of the magnitude of a dipole is called its

(k)	If a molecu	ule is non	polar, it has	a dipole mor	ment of
(I)	Assuming	that bond	l lengths are	fairly consta	ant, we can say that as the electronegativity
	difference	between	two atoms ii	ncreases, the	e dipole moment of the bond between them
(m)	Even thou	gh there i	s a continuu	m between t	he extremes of ionic and covalent bonding, the
	simplest a	pproach i	s to assume	that the bon	d between a metal and a nonmetal is
		an	d that the bo	nd between	two nonmetals is
(n)	SnCl ₄ is a	colorless	liquid at roo	m temperatu	ıre. It freezes at –33°C and boils at 114°C.
	Do these p	oroperties	suggest ion	ic or covaler	nt bonding in this substance?
Sec	<u>ction 8.5 –</u>	<u>Drawing</u>	Lewis Stru	<u>ctures</u>	
(a)			n dot structu h structure.	res for each	of the following molecules. There should be only
	SiCl ₄	PF ₃	SBr ₂	CH ₃ NH ₂	C ₂ H ₅ Cl
(b)			n dot structu ach structure		of the following molecules. There may be a double
	COCl ₂	C ₂ H ₄	C ₂ H ₂	HCN	SO ₂

(c)	c) Draw Lewis electron dot structures for each of the following polyatomic ions.					
	CIO ₃ -	NO ₃ -	NO_2^+	SO ₄ ²⁻	C_2^{2-}	
(d)	The formal	charge of	anv atom ir	n a molecule	or ion is the charge the atom would have if each	
()		J	•			
(e)					inus	
(f)					n the polyatomic ions that were drawn in part	
(1)	(c).	ine formal e	narges on	cacii atomi	in the polyatornic ions that were drawn in part	
(g)	If more tha	n one Lewi	s structure	is possible,	we can use formal charges to predict the	
	dominant s	structure. Tl	ne dominar	nt Lewis stru	icture is generally the one in which the atoms bear	
	formal cha	rges closes	t to		. A Lewis structure in which any negative charges	
	reside on t	he more			atoms is generally more preferred.	
(h)					wis structures is the most dominant structure for st structure?	
	[::	- c —	;;;	·		

(i) Use formal charges to determine the overall charge of the following polyatomic ion.

Remember that formal charges do not represent real charges on atoms. These charges are just a convenient bookkeeping method that helps us decide which structure is preferred.

<u>Section 8.6 – Resonance Structures</u>

(a) Based on Figure 8.12 on page 309, does the ozone molecule contain one (shorter) double bond and one (longer) single bond? Explain.

(b) When a double-headed arrow is drawn between two resonance structures, does it mean that the two forms of the molecule are oscillating back and forth? Explain.

(c) How does "blue + yellow = green" help us understand the concept of resonance structures?

(d) Two or more resonance structures will have _____ arrangement of atoms, but a different _____

(e)	Draw two different resonance forms for the acet	ate ion, CH₃CO₂¯				
(f)	Draw three different resonance forms for the car	bonate ion.				
(g)	Draw the two resonance structures for benzene.					
(h)	If a C–C single bond has a length of 1.54 Å and has a length of 1.34 Å, what is the expected bor					
	C ₆ H ₆ , based on Figure 8.14 on page 311?					
the have border	Bond Order is defined as the number of chemical bonds between a pair of atoms. For example, the bond order in F_2 is 1, and the bond order in O_2 is 2. The bond order in V_2 is 3. In molecules that have two or more resonance forms, the bond order does not have to be an integer. In benzene, the bond order between the carbon atoms is 1.5, based on resonance. Where does the 1.5 value come from? It represents the fact that each C–C bond in benzene can be either a single bond or a double bond in two different resonance structures. The average bond order based on these two resonance forms is $\frac{1+2}{3} = 1.5$					
(i)	What is the bond order for each of the following,	based on resonance?				
	The O–O bond in O ₃	The C–O bond in CH ₃ CO ₂ ⁻				
	The S–O bond in SO ₃	The N–O bond in NO ₃ ⁻				
Sec	ction 8.7 – Exceptions to the Octet Rule					
(a)	(a) Draw the Lewis structure of NO, NO ₂ , and ClO ₂ . Each of these Lewis structures has an odd number of electrons.					

(b)	Draw the	Lewis str	ucture of E	3F₃. The c	entral atom	ı has less t	han an oc	tet.		
(c)	Why is a	Lewis stru	ucture for I	BF₃ with a	double bo	nd an unfa	vorable str	ructure?		
(d)	allow bore	on to com		ctet. Draw		e an unsha structure fo	•			
(e)	Such mol only for c reason fo	lecules (or	r ions) are ms from p mation is t	called hyperiod	pervalent. I	s with mor Typervalen below in th	t molecule ne periodio	es (or ions)) are forme	
(f)		e molecule s (or ions)	•) that shou	ıld exist, ba	sed on the	ese rules th	nat apply t	o hyperva	lent
	OF ₄	SF ₄	NF ₅	PF ₅	OF ₆	SeF ₆	XeF ₂	IF ₄ ⁻	Br ₃ ⁻	
(g)	Draw the	Lewis str	uctures fo	r each of tl	he molecul	es or ions t	that you ci	rcled in pa	art (f).	

(h)	There are Lewis structures and obtaining the most favor	orable formal charge			
	Lewis structures for the pho	osphate ion, PO ₄ 3-			
	obeys the octe	t rule	minimizes	s the formal charges	on the atoms
(i)	Draw two different Lewis st	ructures for the chlo	orate ion, Cl0	O ₃ -	
	obeys the octe	t rule	minimizes	s the formal charges	on the atoms
Sec	ction 8.8 – Strengths of Co	ovalent Bonds			
(a)	The bond enthalpy is the e	nergy required to			
(b)	The greater the bond entha	alpy, the		the bond.	
(c)	Breaking a bond is always	an	p	process, and forming	a bond is
	always an	process.			
(d)	Use the bond enthalpies or reaction:	າ page 316 and Equ	ation [8.12]	to estimate the ΔH fo	or the following
		$N_2 + 3 F_2$	→ 2 NF ₃		

(e)	Use the bond enthalpies on page 316 and Equation [8.12] to estimate the ΔH for the following reaction:
	$2 C_2H_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$
(f)	In general, as the number of bonds between two atoms increases, the bond grows
(f)	in general, as the number of bonds between two atoms increases, the bond grows
	and This trend is illustrated in Figure
	8.17 for N–N single, double, and triple bonds.