Dougherty Valley HS AP Chemistry Practice Test

- 1. At 720 K, the value of K_p for the reaction is 0.0300. In an experiment, a rigid container initially has 4.45 atm of $H_{2 \text{ (g)}}$, and 2.25 atm of $N_{2(g)}$, and 1.75 atm of $NH_{3(g)}$ and allowed to reach equilibrium at 720 K. Determine whether the pressure at equilibrium for NH_{3 (g)} will be greater than, equal to, or less than the initial pressure of NH_{3 (g)}. In this reaction, hydrogen gas and nitrogen gas are the reactants.
 - greater, with O = 64.7a)
- greater, with a Q = 0.0154
- c) greater, with a Q = 0.0604
- d) less, with a Q = 0.0154
- e) less, with a Q = 0.0203
- 2. At a certain temperature, $K = 2.58 \times 10^{-7}$ for the reaction

$$2 SO_{3(g)} \rightleftharpoons 2 SO_{2(g)} + O_{2(g)}$$

Calculate the concentrations of each (at equilibrium) in which there was 3.75 mol SO₃ initially in a one liter container.

- $\begin{bmatrix} O_2 \end{bmatrix} = 0.00968 \ M ; \begin{bmatrix} SO_2 \end{bmatrix} = 0.00968 \ M ; \begin{bmatrix} SO_3 \end{bmatrix} = 3.75 \ M$
- b) $\left[O_2 \right] = 0.00768 \ M$; $\left[SO_2 \right] = 0.0154 \ M$; $\left[SO_3 \right] = 3.75 \ M$
- c) $\left[O_2 \right] = 0.0154 \ M$; $\left[SO_2 \right] = 0.0154 \ M$; $\left[SO_3 \right] = 3.75 \ M$
- d) $\left[O_2 \right] = 0.0154 \ M$; $\left[SO_2 \right] = 0.0307 \ M$; $\left[SO_3 \right] = 3.75 \ M$
- e) $\left[\begin{array}{c}O_2\end{array}\right] = 0.00968~M~; \left[\begin{array}{c}SO_2\end{array}\right] = 0.0194~M~; \left[\begin{array}{c}SO_3\end{array}\right] = 3.75~M$
- 3. For the following process at 325 °C, what are the partial pressures (in atmospheres, atm) of the gases at equilibrium for a reaction where nitrogen gas reacts with oxygen gas to form nitrogen monoxide. The equilibrium constant, K_n , at this temperature is equal to 1.75. The partial pressure (at this temperature) for nitrogen monoxide at equilibrium is 0.558 atm.
 - a) nitrogen gas = 0.178 atm, oxygen gas = 0.178 atm, nitrogen monoxide = 0.558 atm
 - b) nitrogen gas = 0.565 atm, oxygen gas = 0.565 atm, nitrogen monoxide = 0.558 atm
 - nitrogen gas = 0.356 atm, oxygen gas = 0.356 atm, nitrogen monoxide = 0.558 atm c)
 - nitrogen gas = 0.421 atm, oxygen gas = 0.421 atm, nitrogen monoxide = 0.558 atm d)
 - e) nitrogen gas = 2.37 atm, oxygen gas = 2.37 atm, nitrogen monoxide = 0.558 atm
- 4. If the following reaction were at equilibrium in a closed vessel at a controlled temperature, what would be the effect of adding more H₂ to the reaction vessel and permitting the reaction to approach equilibrium again

$$CO + H_2O \rightleftharpoons CO_2 + H_2$$

- a) The concentrations of CO, H₂O and H₂ would all increase.
- b) The concentrations of CO, H₂O and H₂ would all decrease.
- c) The concentrations of CO and H₂O would increase and the concentration of CO₂ would decrease.
- d) The concentrations of CO and H₂O would decrease and the concentration of CO₂ would increase.
- e) There is no way to determine the correct answer from the information given.
- 5. [SKIP] For the reaction of hydrazine (N_2H_4) in water at a certain temperature.

$$H_2NNH_{2(aq)} + H_2O_{(l)} \rightleftharpoons H_2NNH_{3(aq)}^{+1} + OH_{(aq)}^{-1}$$

 $K_b = 5.12 \times 10^{-7}$. Calculate the pH of a 6.00 M solution of hydrazine in water.

- a) 5.51
- b) 6.29
- c) 8.49
- d) 11.24
- e) 12.72
- 6. [SKIP] The pOH of a 3236 mL solution of HClO₃ is 10.22. How many grams of HClO₃ are in solution?
 - a) $1.65 \times 10^{-8} \ grams$ b) $4.54 \times 10^{-2} \ grams$ c) $1.40 \times 10^{-2} \ grams$ d) $3.45 \times 10^{-2} \ grams$

7.	[SKIP] Calculate the	K_a of a 0.00433 M	weak monoprot	tic acid with	a pH of 2.78.		
	a) 0.00166	b) 969	c) 0.383	d)	0.000636	e) 0.00	103
8.	acid, HC ₇ H ₅ O ₂ (Assume no cha	ange in volu			a 1.58 <i>M</i> solution of benz Calculate the pH of
10.	[SVID] A colution	contains 125 mL o	f a week base	-101 - 247	м (Г р 1 к ,	- 5.78 × 10-5) and 183 mL of HI that I
10.		n equal to 4.56 <i>M</i> . b) 9.67		H for this so		e) 12.2	
11.	[SKIP] If 550 mL a) 0.89	of 0.76 <i>M</i> HClO ₃ and b) 3.23	re added to 600 c) 7.00	mL of 0.45 A	M KOH, what i d) 13.10		13.45
12.	In the table below are Predict the sign :	e data that show the for the change in en	•	(0)			-
	a) $\Delta H = +$, b) $\Delta H = +$,	shift to the right		$N_{2 (g)} +$	$H_{2 (g)} \rightleftharpoons N$	$H_{3 (g)}$	7
	*	shift to the right		Temper	rature % 1	NH _{3 (g)}	
	*	shift to the left		255	OC	45	
	e) none of th	e above		372	'C	22	
13.	A molecule whose control of the International Internationa	midal	³ hybridization c) I and I		ich of the follow		I, II and III
14.	A compound contain	ing only sulfur and	oxygen is 50%	sulfur by we	eight. What is th	ne empirical fo	rmula for the
	compound? a) SO	b) SO ₂	c)	SO_3	d)	S_2O	e) S ₃ O
15.	Which form of orbita a) sp	al hybridization can b) sp^2		s with shapes sp^3		trigonal pyram dsp ³	idal or tetrahedral? e) d^2sp^3
16.	helium as neon,	helium and neon gawhat is the partial p b) 0.3 atm	ressure due to r			cture contains to 0.8 atm	e) 0.9 atm
	a) 0.2 atm	0) 0.3 aun	C)	0.4 aun	u)	0.8 aun	e) 0.9 aun
Que	b) Netwo c) Hydro d) Ionic	lic bonding ork covalent bondin ogen bonding bonding on dispersion forces					
17.	Solids exhibiting this	s kind of bonding ar	e excellent cond	ductors of he	eat.		
18.	[C] This kind of bone	ding is the reason th	nat water is more	e dense than	ice.		
19.	This kind of bonding	exists between atom	ms with very di	fferent electi	onegativities.		

20. [B] The stability exhibited by diamonds is due to this kind of bonding.

			e pressure of the							
			e density of the							
	a)	I only	b) II on	ly c)	I and III onl	y d)	I and I	I only	e) I, I	I and III
23.	a) b)	ich of the follow Chlorine has a g Sodium has a la Chlorine has a g Chlorine has a l	greater electron larger first ionizal larger atomic ra reater electrone	egativity and a ation energy and adius and a gree egativity and a	a larger first ion a larger aton ater electrones larger first ion	onization energenic radius. gativity. nization energ				
24.	_	IP] Which of the in its ground sta 4, 0, 1, ½	ite.	•			ĺ		tron in	a potassium atom
25.	[SK	[IP] A 22.0 gram	sample of an u	unknown gas of the gas?	occupies 11.2 l		rd temp	perature and pr		Which of the
	a)	CO_2	0) 50	2	$C)$ C_2		u)	N_2	C)	110
26.	Wh a)	ich of the follow O ⁻²	ring ions has th b) F	e smallest ioni	c radius? c) Na +1		d)	${\rm Mg}^{^{+2}}$	e)	Al ⁺³
27.	a)	IP] Which of the $\left(\frac{-2.178 \times 10^{-2}}{2}\right)$ $\left(\frac{-2.178 \times 10^{-2}}{16}\right)$	joules	b) $\left(\frac{-2.17}{1000}\right)$	$\frac{78\times10^{-18}}{4}$ joint	ules c				in the n = 4 state?
28.	a) b)	en ammonium cal ammonium chlo magnesium carl no (no reaction two (both produ	orate bonate)		um chlorate th	e reaction wil	l form a	1]	precipi	tate(s).
29.	[SK	IP] When an ele wavelength of 4								blue light with a he transition?
	a)	$\frac{\left(6.63 \times 10^{-34}\right)\left(3.63 \times $	$\frac{3.00\times10^8}{0^{-7}}$ jour	ules b)	$\frac{\left(6.63 \times 10^{-34}\right)}{\left(3.003\right)}$	$\frac{(4.34 \times 10^{-7})}{\times 10^8}$	joules			
	c)	$\frac{(6.63 \times 10^{-7})(3)}{(4.34 \times 10^{-7})(3)}$	$\frac{0^{-34}}{.00\times10^8}$ jour	<i>les</i> d)	$\frac{(4.34)}{(6.63\times10^{-34})}$	$\times 10^{-7}$) (3.00×10^{8})	joules			
	e)	(6.63×10^{-34})	4.34×10 ^{−7})joi	ıles						

c) Be

22. [SKIP] A gas sample is confined in a 5 liter container. Which of the following will occur if the temperature of the container

e) C

d) B

21. [SKIP] Which of the following elements is diamagnetic?

b) Li

The kinetic energy of the gas will increase

a) H

is increased?

I.

 30. A researcher listed the first five ionization energies for a silicon atom in order from first to fifth. Which of the following lists that corresponds to the ionization energies for silicon? a) 780 kJ, 13,675 kJ, 14,110 kJ, 15,650 kJ, 16,100 kJ b) 780 kJ, 1475 kJ, 14,110 kJ, 15,650 kJ, 16,100 kJ c) 780 kJ, 1475 kJ, 3,320 kJ, 15,650 kJ, 16,100 kJ d) 787 kJ, 1575 kJ, 3,220 kJ, 4350 kJ, 16,100 kJ e) 780 kJ, 1475 kJ, 3,320 kJ, 4050 kJ, 5,340 kJ
31. [SKIP] A gaseous mixture at a constant temperature contains O ₂ , CO ₂ , and He. Which of the following lists the three gases order of increasing average molecular speed? a) O ₂ , CO ₂ , He b) O ₂ , He, CO ₂ c) He, CO ₂ , O ₂ d) He, O ₂ , CO ₂ e) CO ₂ , O ₂ , He
Questions 32 – 34 a) CH ₄ b) NH ₃ c) NaCl d) N ₂ e) H ₂
32. This substance undergoes ionic bonding.
33. This molecule contains two pi (π) bonds.
34. [B] This substance undergoes hydrogen bonding.
Questions 35 – 37 a) BF ₃ b) CO ₂ c) H ₂ O d) CF ₄ e) PH ₃
35. The central atom in this molecule forms sp^2 hybrid orbitals.
36. This molecule has a molecular geometry that has a tetrahedral structure (there is only one correct choice).
37. This molecule has a linear structure.
 38. [SKIP] A liquid whose molecules are held together by which of the following forces would be expected to have the lowest boiling point? a) Ionic bonds b) London dispersion forces c) Hydrogen bonds d) Metallic forces e) Network covalent bonds
39. [SKIP] Which of the following gases would be expected to have a rate of effusion that is three times as large as that of
hydrogen has? a) O ₂ b) N ₂ c) He d) H ₂ O e) CO ₂
 40. When lithium phosphate reacts with silver nitrate the reaction will form (a) precipitate(s). a) lithium nitrate b) silver phosphate c) no (no reaction) d) two (both products form a precipitate)
41. The number of protons in the atom whose atomic mass is 89 and atomic number is 39, is a. 39 b. 50 c. 51 d. 89 e. 128

42.	Which particle has a mass of approxima a. alpha particle b. oxygen-16 nuc			carbon-12 nu	cleus e.	electron					
43.	An atom has atomic number of 13 and a. 2 b. 3	mass number 2 c. 4	27, the number d.		etrons is						
44.	One of the tin isotopes has 50 protons at a. 50 protons and 0 neutrons b. 50 protons and 62 neutrons c. 49 protons and 63 neutrons	d. 63 p	s. Another iso protons and 63 protons and 50 protons	neutrons	ht have						
45.	When an atom of a metal becomes an id a. it is reduced b. it gains protons c. it gains electrons	d. the i		comes less than							
46.	 46. A single burst of light is released from an atom. Which statement explains what happens in the atom? a. An electron is changed from a particle to a wave. b. An electron moved from a higher to a lower energy level. c. An electron pulled a proton out of the nucleus. d. An electron pulled a neutron out of the nucleus. 										
47.	Which kind of bond predominates in Ga. ionic b. covalent	roup 1A (alkal c. hydr		s? d. metallic	e. va	an der Waals					
48.	Which compound is the most ionic? a. $CCl_{4 (I)}$ b. $SiO_{2 (s)}$	c. KCl	(s)	d. NH _{3 (g)}	e. O)2 (g)					
49.	Which compound contains <i>both</i> ionic a a. KCl b. NH ₄ Cl	nd covalent bo c. CCl		d. CO ₂	e. N	1 2					
50.	Which represents a polar molecule? a. F_2 b. O_2	c. HCl		d. PF ₅	e. C	${ m PO}_2$					
51.	[SKIP] The elements of Group 5A, the	nitrogen famil	ly, form compo	ounds with hydr	rogen havii	ng these boiling points					
		Compo	und Boiling	Points							
		SbH ₃		17 °C							
		AsH ₃		55 °C							
		PH ₃ NH ₃		87 °C 33 °C							
50	Ammonia, NH ₃ , does not follow the do a. ionic bonding b. metallic bond	ownward trend ding c.	hydrogen bond	ling d. v	an der Wa	als forces					
52.	The four equivalent C-H bonds in meth a. the carbon atom has one "s" and the b. the carbon atom hybridizes to form c. the compound is a regular hexagon d. carbon forms more compounds that	ree " p " valence four sp^3 orbitation.	e electrons. als.	by assuming							
53.	The formula for ytterbium sulfate is Yba. YbCl ₂ b. Yb ₂ Cl ₃	$c. Yb_2$		a for ytterbium d. YbCl ₃	chloride? e. Y	$^{\prime}$ b $_{3}$ Cl $_{2}$					
54.	The total number of atoms represented a. 22 b. 60	by $\frac{5}{c}$ Al(C ₂ I)		d. 84	e. 1	10					

55.	Usi	ing only these forn	nula	5,		XY ₂ X ₂ Z QZ				
	wh	at formula would y	vou (expect for a compo	ound	of elements Q ar	nd Y	7 ?		
		QY				Q_2Y			e.	Q_4Y
56.	Wl	hat formula is nee					ם נ			
	_	D	L	D	4 1	$\begin{array}{ccc} RuP & + & ? & \rightarrow & 4 R \\ P_3 & & & \end{array}$	uP_2	? D		
	a.	Γ	υ.	P_2	C.	F ₃	u.	P ₄		
57.		e mole of substanc	e X	reacts with one mo	ole (of water and produc	ces c	one mole of oxy	gen a	and two moles of hydrogen
					X	$+ H_2O \rightarrow O_2 +$	2HF	7		
	a.	F_2	b.	OF ₂	c.	O_2F	d.	HOF ₂		
58.		w many moles of roxygen?	mag	nesium remain afte		_		is ignited in a c	losec	l vessel containing 2.0 moles
		1.0	1	2.0	2	$Mg + O_2 \rightarrow 2 M$	lg()	2.5		4.0
	a.	1.0	D.	2.0	c.	3.0	a.	2.5	e.	4.0
59.	[Sk		oress	ed and then cooled	d to	its original tempera	ature	e. Compared to	the o	original conditions the molecules
	_		b.	move slower	c.	are farther apart		d. are closer t	toget	her
60.	_	CIP] At the same to H_2	_	erature which gas l		the fastest average CO_2		ecular speed? CH ₄	e.	Kr
61.	a.	kinetic and potent	tial e	energy	c.	gas is a measure of average kinetic er total potential ene	nergy	y		
	υ.	average potential	CIIC	gy	u.	total potential ene	лду			
62.	_	KIP] Equal volumentain the same num			oxic	le, and methane un	der t	the same condit	ions	of temperature and pressure
	a.	atoms	b.	molecules	c.	protons	d.	electrons	e.	neutrons
63.		he temperature and 1 g of oxygen	d pre b.	essure are the same 2 g of oxygen	c, on	e gram of hydroger 8 g of oxygen	n has d.	s about the same 16 g of oxygen	e nur	nber of atoms as e. 32 g of oxygen
64.	a. b.	CIP] One liter of a the gas is helium. the molar mass of the molar mass of	f the	gas is 4 g mol ⁻¹ .		grams at STP. Fr. d. 6.02 x 10 ²³ m e. there are two	olec	ules of the gas l	nave	a mass of 4 grams.
65.		sample of sulfur die 7 grams b.		e gas has a mass o grams		grams. The mass 16 grams		ne same number 28 grams		nolecules of nitrogen gas is 56 grams
66.		(IP] The approxim 1.35 x 10 ²²				of hydrogen is 1.00 6.02 x 10 ²³				5.38 x 10 ²²
67.	(the	e temperature rema	ains	constant)?						oes this gas occupy at 1.0 atm
	a.	6.5	b.	13	c.	15	d.	20	e.	52
68.		KIP] For a given ar halved		nt of dry gas at cor unchanged		nt temperature, who doubled		ne pressure is do increased, but		
69.	_	XIP] One liter of a is neon	_	has a mass of 1.25 is fluorine	_	ms at 273 K and 76 is oxygen		orr. The gas is nitrogen	e.	is argon

70.	[SKIP] A gas having a. neon gas				nd a temperature o argon gas		5 °C and a press nitrogen gas		of 1230 too sulfur did		
71.	[SKIP] The root-mea		uare speed for a ganeon		310 °C is 603 me argon		per second. The krypton		is xenon		
72.	[SKIP] When 0.5 mo 600 mm Hg. What is	s the	partial pressure of	the	SO_2 ?	_	,			_	sure is
	a. 200 mm Hg	b.	300 mm Hg	c.	400 mm Hg	a.	600 mm Hg	e.	350 mm	Hg	
73.	Which formula repre a. HCl		s a nonpolar molec CF ₄	ule? NH		d.	H_2S	e.	ClF ₃		
74.	What is the molecula a. tetrahedral		ometry for perfluor square pyramidal		nmonium ion, NF ₄ c. see-saw		trigonal pyram	id	e. linea	r	
75.	Which hybridization a. sp		rbitals is present in sp^2		phosphorus trichlo sp ³		e molecule? dsp^3	e.	d^2sp^3		
76.	Upon analysis a com	pour	nd is found to conta	ain 2	2.85% sodium, 21	.49%	6 boron, and 55	.66%	oxygen.	Its empirical	
	formula is a. NaBO				Na ₃ B ₄ O		NaB ₂ O ₅		Na ₂ B ₄ O ₇	-	
77.	A compound is comp	ose	d of 79.82% carbor	n and	d 20.18% hydrogei	1. W	Vhat is its empir	ical 1	formula?		
	a. CH		CH ₂		CH ₃		C_2H_6		C_4H		
78.	A 500 mL sample of hydrogen = 7.742%.				.5812 grams. The	com	nposition of gas	is ca	rbon = 92.	258% and	
	a. CH ₄		C_2H_2		C_2H_4	d.	C_3H_6	e.	C_4H_{10}		
79	How many sugar mo	lecui	les are there in 1 00	0 mI	of 0 100 <i>M</i> sugar	· soli	ution?				
1).			6.02×10^{23}				6.02×10^{19}	e.	3.01 x 10) ¹⁸	
80.	The volume of pure of a. 800 mL		en needed to burn 1600 mL		pletely 800 mL of 2000 mL		tylene (C_2H_2) g 10000 mL		20000 m	L	
81.	What is the energy for a. $5.77 \times 10^{-19} \text{ J}$	or a p b.	photon of light with 1.73 x 10 ¹⁸ J	h a w c.	vavelength of 345 i 2.28 x 10 ⁻⁴⁰ J	nm? d.	4.37 x 10 ³⁹ J	e.	2.33 x 10) ⁻¹⁸ J	
82.	[SKIP] Hydrogen gas a. 6.45		now many times far 41.6		than krypton gas? 83.1	d.	9.12	e.	0.155		
83.	Which of the following a . N^{+1}	ng h	as the largest radiu $b. N^{+3}$	ıs?	c. N ⁻³		d. N ⁺⁵		e.	N^{+4}	
84.	[SKIP] Molecules of a. pressure		erent gases have th temperature		me average kinetic volume		ergies at the sam density	ie			
85.	Which number has that a) 965.		eatest number of si b) 0.440	ignif	icant figures? c) 100.0		d) 0.00070)	e)	2.22 x 10 ¹	
86.	Iridium (symbol Ir, a isotopes is iridium a) Ir-77	-191							other isoto		

87.	Cal	culate the	mass of co	pper	that occupie magnesium	es the san	ne vo	olume as 75.0	g of r	nagr	nesium. The	densit	ty of	copper is
		0.0689 g	THE GEHS.	-	43.1 g	115 1./4 }	_	15.0 g		d)	386 g		e)	0.00259 g
88.		out how m 1.2 x 10 ²³		gen at b)	toms are in $0.3.0 \times 10^{22}$	0.050 mo		CH ₄ gas? 4.8 x 10 ²⁵		d)	6.0×10^{23}		e)	7.5×10^{21}
89.	a) c)	Cs ₂ SO ₄ , PbCl ₂ , le	following is cesium su ead(II) chl e above an	ılfate oride	;	match of	b)	ne and formula NH ₄ SO ₃ , an Fe(CH ₃ CO ₂	nmon					
90.		ich has the NH ₃	e greatest p		nt by weight HCN	of nitrog		HNO ₃		d)	(NH ₃) ₃ PO ₄		e)	NaNO ₃
91.		compoun XZ	ds XSO ₄ a	nd Na b)	a ₂ Z suggest ZX	the exist		of: X ₂ Z		d)	XZ_2		e)	XZ_3
92.		at is the m 168 g	ass of one		cule of C ₁₂ H 82. G	H_{24} ?	c)	$4.6 \times 10^{22} \mathrm{g}$		d)	2.8 x 10 ⁻¹⁷ g		e)	2.8 x 10 ⁻²² g
91.	•		cium hydro	oxide		•		o neutralize 10 0.1774 M	00. ml		OH) ₂ (aq). O1005 M	What		e concentration 0.2010 M
92.	Cal			mole			2 m	nol of the hydr 8 mol	rate, C	CuSC			ĺ	18 mol
93.						CO_2	O_3	_	SO					
		CO ₂ & O	,		& CH ₂ O	,		& SO ₂	d)	CO	2 & SO ₂	e)	CO	0 ₂ & CH ₂ O
94.		IP] What sp	are the hyb	orid o		odine in t	he n c)	nolecule IF ₃ ?		d)	sp^3d		e)	$\mathrm{sp}^3\mathrm{d}^2$
95.	tł		loon occup e remains t	he saı		. How co		nust it be to re 5° C	educe		volume to one 20 K	fourt		e original size? Assumo
96.	_	[IP] If a 1.0 22.4 g/m			ns 42.9 g of 42.9 g/mol			essure of 4.0 a 86 g/mol	tm at		K, what is th	e mo		lar weight of the gas? 90. g/mol
97. What is the value of the equilibrium constant, K _c at 1000 ^o C, for the reaction below:														
$C(s) + 2 H_2(g) \leftrightarrow CH_4(g)$														
		e equilibriu 0.0159	ım amount		H ₄ is 0.050 l 0.247	M and H	_	0.45 M at 1000 127	0°C.	d)	3.82×10^3		e)	5.14 x 10 ⁴
98.		at is the ec 2.7 x 10 ⁻⁵			entration of 3.5 x 10 ⁻³	F ₂ at 100		f the initial con 1.3 x 10 ⁻²	ncenti		n of HF is 0.2 5.4 x 10 ⁻¹	25 M a		K _c is 2.7 x 10 ⁻³ ? 2.6 x 10 ⁻²
99.	-	[IP] What 1.91	is the pH o		10 M HC₄H 2.91	I ₇ O ₂ solu		? The K _a of H 2.41	IC ₄ H ₇ (s 1.5 x 10 ⁻⁵ . 11.09		e)	10.31
100	-	KIP] Whic NaOH (a			(aq)	cidic? c) Na	Cl (a	aq) d)) NH	4Cl	(aq) e)	CH	3CO	$\mathrm{NH}_2\left(aq ight)$