2019-20 Practice Midterm

1-3 Lab themed questions 4-7 Trivia/Misc Questions 8-17 Thermo Questions 18-28 Kinetics Questions

*Skip #2-7

1. A 20.0 mL sample of a Cu²⁺ solution was diluted to 250.0 mL. A portion of this solution was found to have an absorbance of 0.15 under the same conditions that were used to generate the given absorbance vs. [Cu²⁺] graph. What was the concentration of Cu²⁺ ions in the original sample?

- (A) 0.0060 M
- (C) 0.30 M
- **(B)** 0.075 M
- (**D**) 0.94 M
- 2. A student performed an experiment to determine the ratio of H₂O to CuSO₄ in a sample of hydrated copper(II) sulfate by heating it to drive off the water and weighing the solid before and after heating. The formula obtained experimentally was CuSO₄ •5.5H₂O but the accepted formula is CuSO₄ •5H₂O. Which error best accounts for the difference in results?
 - (A) During heating some of the hydrated copper(II) sulfate was lost.
 - **(B)** The hydrated sample was not heated long enough to drive off all the water.
 - (C) The student weighed out too much sample initially.
 - (D) The student used a balance that gave weights that were consistently too high by 0.10 g.
- 3. Which combination of solutions of HCl and NaOH would produce the largest ΔT ?
 - (A) 50 mL of 1 M HCl with 50 mL of 1 M NaOH
 - (B) 50 mL of 2 M HCl with 50 mL of 2 M NaOH
 - (C) 100 mL of 1 M HCl with 50 mL of 2 M NaOH
 - (D) 100 mL of 1 M HCl with 100 mL of 1 M NaOH
- 4. Which substance is the least soluble in H_2O ?
 - (A) K_2CO_3
- (B) KHCO₂
- (C) $Ca(HCO_3)_2$
- (D) CaCO₃

- 5. When 6 M hydrochloric acid is added to an unknown white solid, a colorless gas is produced. What is a possible identity for this solid?
 - (A) calcium nitrate
- (**B**) copper(II) chloride
- (C) potassium sulfate
- (D) sodium carbonate
- 6. Which compound is most soluble in water?
 - (A) AgCl (B) Ag_2CO_3 (C) $BaCl_2$

- (D) BaCO₃
- 7. A 65.25 g sample of $CuSO_4 \cdot 5H_2O$ (M = 249.7) is dissolved in enough water to make 0.800 L of solution. What volume of this solution must be diluted with water to make 1.00 L of 0.100 M CuSO₄?
 - (A) 3.27 mL
- **(B)** 81.6 mL
- (C) 209 mL
- (**D**) 306 mL
- For which reaction at equilibrium does a decrease in 8. volume of the container cause a decrease in product(s) at constant temperature?
 - (A) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$
 - **(B)** $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$
 - (C) $HCl(g) + H_2O(l) \rightleftharpoons H_3O^+(aq) + Cl^-(aq)$
 - (D) $SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$
- 9. Use the thermodynamic information:

$$\frac{1}{2} N_2(g) + \frac{1}{2} O_2(g) \rightarrow NO(g)$$

 $\Delta H^{\circ} = 90.4 \text{ kJ/mol}$

 $\frac{1}{2} N_2(g) + O_2(g) \rightarrow NO_2(g)$

 $\Delta H^{\circ} = 33.8 \text{ kJ/mol}$

 $2NO_2(g) \rightarrow N_2O_4(g)$

 $\Delta H^{\circ} = -58.0 \text{ kJ/mol}$

to calculate ΔH° in kJ/mol for the reaction:

$$2NO(g) + O_2(g) \rightarrow N_2O_4(g)$$

- **(A)** -171.2
- **(B)** -114.6 **(C)** 114.6
- **(D)** 171.2
- 10. Which reaction proceeds with the greatest increase in entropy?
 - (A) $H_2(g) + O_2(g) \rightarrow H_2O_2(1)$
 - **(B)** $Br_2(1) + F_2(g) \rightarrow 2BrF(g)$
 - (C) $Cu^{2+}(aq) + Zn(s) \rightarrow Cu(s) + Zn^{2+}(aq)$
 - (**D**) $4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(g)$
- 11. All of the following are expected to affect the rate of an irreversible chemical reaction EXCEPT
 - (A) adding a catalyst.
 - **(B)** removing some products.
 - (C) increasing the temperature.
 - (D) decreasing the reactant concentration.

12. For the reaction,

$$N_2H_4(1) \rightarrow N_2(g) + 2H_2(g) \quad \Delta H^\circ = -50.6 \text{ kJ}.$$
 This reaction is

- (A) spontaneous at all temperatures.
- (B) non-spontaneous at all temperatures.
- (C) spontaneous only at low temperatures.
- (D) spontaneous only at high temperatures.
- 50.0 mL of 0.10 M HCl is mixed with 50.0 mL of 0.10 M NaOH. The solution temperature rises by 3.0 °C. Calculate the

Solution Values	
$C_{\mathtt{p}}$	$4.18~J\cdot g^{-1}\cdot {}^{\circ}C^{-1}$
density	$1.0~g{\cdot}mL^{-1}$

enthalpy of neutralization per mole of HCl.

- **(A)** $-2.5 \times 10^2 \text{ kJ}$
- **(B)** $-1.3 \times 10^2 \text{ kJ}$
- (C) $-8.4 \times 10^1 \text{ kJ}$
- **(D)** $-6.3 \times 10^1 \text{ kJ}$

14. What is the standard enthalpy of formation of ethylene, C_2H_4 , if its standard enthalpy of combustion is -1411 kJ•mol⁻¹?

substance	ΔH_f° , kJ•mol ⁻¹
$CO_2(g)$	-394
H ₂ O(1)	-286

- (**A**) 1411 kJ•mol⁻¹
- **(B)** 51 kJ•mol⁻¹
- (C) $-337 \text{ kJ} \cdot \text{mol}^{-1}$
- **(D)** $-445 \text{ kJ} \cdot \text{mol}^{-1}$
- **15.** For which substances and conditions can $S^{\circ} = 0$?
 - I. elements at 0 K
 - II. compounds at 0 K
 - III. gases at 298 K
 - (A) I only
- (B) III only
- (C) I and II only
- (D) I and III only
- **16.** Which substance has the greatest molar entropy at 298 K?
 - (A) $NO_2(g)$
- **(B)** $N_2O_4(1)$
- (C) $N_2O_4(g)$
- **(D)** $N_2O_5(s)$

What can be concluded about the values of ΔH and ΔS from this graph?

- (A) $\Delta H > 0$, $\Delta S > 0$
- **(B)** $\Delta H > 0$, $\Delta S < 0$
- (C) $\Delta H < 0, \Delta S > 0$
- **(D)** $\Delta H < 0, \Delta S < 0$
- **18.** Consider this gas phase reaction.

$$\text{Cl}_2(g) + \text{CHCl}_3(g) \rightarrow \text{HCl}(g) + \text{CCl}_4(g)$$

The reaction is found experimentally to follow this rate law.

rate =
$$k [CHCl_3] [Cl_2]^{1/2}$$

Based on this information, what conclusions can be drawn about this proposed mechanism?

Step 1.
$$Cl_2(g) \rightleftharpoons 2Cl(g)$$

Step 2.
$$Cl(g) + CHCl_3(g) \rightarrow HCl(g) + CCl_3(g)$$

Step 3.
$$Cl(g) + CCl_3(g) \rightarrow CCl_4(g)$$

- (A) Step 1 is the rate-determining step.
- (B) Step 2 is the rate-determining step.
- (C) Step 3 is the rate-determining step.
- (D) The rate-determining step cannot be identified.
- **19.** This is the rate law for a reaction that consumes X.

$$rate = k [X]^2$$

Which plot gives a straight line?

- (A) [X] vs. time
- **(B)** ln [X] vs. time
- (C) 1 / [X] vs. time
- **(D)** $1 / \ln |\mathbf{X}|^2 vs.$ time
- 20. $6I^{-}(aq) + BrO_{3}^{-}(aq) + 6H^{+}(aq) \rightarrow 3I_{2}(aq) + Br^{-}(aq) + 3H_{2}O(l)$ These data were obtained when this reaction was studied.

[I ⁻], M	[BrO ₃ ⁻], M	[H ⁺], M	Reaction rate, $mol \cdot L^{-1} \cdot s^{-1}$
0.0010	0.0020	0.010	8.0×10^{-5}
0.0020	0.0020	0.010	1.6×10^{-4}
0.0020	0.0040	0.010	1.6×10^{-4}
0.0010	0.0040	0.020	1.6×10^{-4}

What are the units of the rate constant for this reaction?

- **(A)** s^{-1}
- **(B)** $mol \cdot L^{-1} \cdot s^{-1}$
- (C) $L \cdot mol^{-1} \cdot s^{-1}$
- **(D)** $L^2 \cdot mol^{-1} \cdot s^{-1}$

- **21.** Which statement is true about a reactant that appears in the balanced equation for a reaction but does not appear in the rate equation?
 - (A) It is an inhibitor.
 - (B) It is not part of the reaction.
 - (C) Its concentration is too low to be important.
 - (D) It takes part in the reaction after the ratedetermining step.
- **22.** Which change will decrease the rate of the reaction between $I_2(s)$ and $H_2(g)$?
 - (A) Increasing the partial pressure of H₂(g)
 - (B) Adding the $I_2(s)$ as one piece rather than as several small ones
 - (C) Heating the reaction mixture
 - (D) Adding a catalyst for the reaction
- **23.** For the reaction:

 $(CH_3)_3CBr(aq) + OH^-(aq) \rightarrow (CH_3)_3COH(aq) + Br^-(aq)$ it is found that halving the concentration of $(CH_3)_3CBr$ causes the reaction rate to be halved but halving the concentration of OH^- has no effect on the rate. What is the rate law?

- (A) Rate = $k[(CH_3)_3CBr]^{\frac{1}{2}}[OH^-]$
- **(B)** Rate = $k[(CH_3)_3CBr]^2[OH^-]$
- (C) Rate = $k[(CH_3)_3CBr]^{\frac{1}{2}}$
- **(D)** Rate = $k[(CH_3)_3CBr]$
- **24.** The commercial production of ammonia is represented by the equation $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$. If the rate of disappearance of $H_2(g)$ is 1.2×10^{-3} mol/min, what is the rate of appearance of $NH_3(g)$?
 - (A) $2.4 \times 10^{-3} \text{ mol/min}$
- **(B)** $1.8 \times 10^{-3} \text{ mol/min}$
- (C) $1.2 \times 10^{-3} \text{ mol/min}$
- **(D)** $8.0 \times 10^{-4} \, \text{mol/min}$
- **25.** The hypothetical reaction $2A + B \rightarrow C + D$ is catalyzed by E as indicated in the possible mechanism below.

(Step 1)
$$A + E \longrightarrow AE$$
 (fast)

(Step 2)
$$AE + A \rightarrow A_2 + E$$
 (slow)

(Step 3)
$$A_2 + B \rightarrow C + D$$
 (fast)

Which rate law best agrees with this mechanism?

- (A) Rate = k[A][B]
- **(B)** Rate = k[A][E]
- (C) Rate = $k[A]^2[E]$
- **(D)** Rate = $k[A]^2[B]$

26. The plot shows the volume of H₂ gas produced as a function of time by the reaction of a given mass of magnesium turnings with excess 1 M HCl. What graph results from the reaction of an equal mass of magnesium turnings with excess 2 M HCl? (Assume all graphs

are plotted on the same scale as the one shown above.)

27. One proposed mechanism for the hydrolysis of an ester is shown below.

RCOOR' + $H_3O^+ \rightarrow RCOHOR^{+} + H_2O$ RCOHOR' + $H_2O \rightarrow RC(OH)OR'(OH_2)^+$ RC(OH)OR'(OH₂) + $H_2O \rightarrow RCOOH + R'OH + H_3O^+$ Which species is considered an intermediate?

- (A) RCOHOR'
- **(B)** H₃O⁺
- (C) RCOOR'
- **(D)** R'OH
- **28.** For this first-order isomerization reaction, $CH_3NC \rightarrow CH_3CN$

how do the properties of the reaction in the table below vary as the reaction proceeds?

	Rate of reaction $-\Delta[\underline{CH_3}\underline{NC}]$, $(M \cdot s^{-1})$	Half-life, (s)
(A)	remains the same	decreases
(B)	decreases	remains the same
(C)	remains the same	remains the same
(D)	decreases	decreases

- (A) A (B)
- **(B)** B
- (C) C
- **(D)** D

ANSWER KEY:

# Answer Source		
1	D	2000 Local #15
2	Α	2010 Local #5
3	В	2000 Local #26
4	С	2000 Local #3
5	D	2005 Local #1
6	С	2007 Local #1
7	С	2011 Local #4
8	Α	2007 Local #31
9	Α	2010 Local #20
10	В	2005 Local #23
11	В	2005 Local #25
12	Α	2005 Local #24
13	А	2002 National #21
14	В	2011 Local #21
15	С	2002 National #20
16	С	2012 National #22
17	Α	2002 National #22
18	В	2002 National #29
19	С	2002 National #25
20	С	2002 National #28
21	D	2011 Local #28
22	В	2011 Local #30
23	D	2005 Local #28
24	D	2010 Local #26
25	С	2012 National #29

26	D	2007 Local #25
27	Α	2012 Local #30
28	В	2012 Local #28