AP Chemistry

Thou Shalt Not Forget

Credit: Dan Reid

Thermochemistry

- 1. Exothermic reactions: (-) ΔH ; feels hot; heat is a product; temperature goes up...(endothermic is the opposite.)
- 2. ΔH_{rxn} = Bonds broken Bonds formed...(reactant bonds are broken; product bonds are formed)
- 3. Breaking bonds is endothermic. Forming bonds is exothermic.
- 4. $\Delta H_{rxn} = \Delta H_{products} \Delta H_{reactants}$...Don't forget to multiply by the coefficients!!
- 5. If a reaction is exothermic, then the bonds formed in the products are stronger/more stable than the reactant bonds.
- 6. Doubling a reaction? ΔH will double. Reversing a reaction? The sign for ΔH changes. Adding reactions? Add the ΔH 's.

Thermodynamics: ΔG and ΔS

- 1. Thermodynamically favorable (spontaneous) reactions have a $(-)\Delta G$.
- 2. Reactions with $(-)\Delta H$ and $(+)\Delta S$ are ALWAYS thermodynamically favorable..."enthalpy driven & entropy driven"
- 3. Reactions that increase the # of moles of gas have a $(+)\Delta S$.
- 4. If ΔG is (-), then $K_{eq} > 1$.
- 5. ΔH and ΔS are usually NOT given in the same units!! When using $\Delta G^{o} = \Delta H^{o} T\Delta S^{o}$, make sure they match units.
- 6. $\Delta G = 0$ at equilibrium.
- 7. When using $\Delta G^{o} = -RT \ln K$, the value for R is 8.314 J/mol K so the answer for ΔG will be in the units of Joules.
- 8. Sometimes a reaction with a $(-)\Delta G$ does not proceed at a measurable rate. They are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control.