N4 - THERMOCHEMISTRY

Hess's Law

Hess's Law

"In going from a particular set of reactants to a particular set of products, the change in enthalpy is the same whether the reaction takes place in one step or a series of steps."

Hess's Law

The change in enthalpy for a stepwise process is the sum of the enthalpy changes of the steps.

Hess's Law

Path A – Mrs. Farmer cleaning the house.

Path B – Mr. Farmer cleaning the house.

Regardless of the path taken, you still get to the same place. Although Path B drives Mrs. Farmer bonkers

reactants Energy ΔΕ Path "A products

- Ha!

Relationships Involving ΔH_{rxn}

- Multiplying Rxn by a # to Change Coefficients ΔH_{rxn} is multiplied by that factor.
 - Because ΔH_{rxn} is extensive depends on the amount of substance

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H = -393.5 \text{ kJ}$

2
$$C(s) + 2 O_2(g) \rightarrow 2 CO_2(g)$$
 $\Delta H = 2 \times (-393.5 \text{ kJ}) = -787.0 \text{ kJ}.$

Reversing a rxn to flip which side the products/reactants are on

Flip the sign of ΔH , if positive now negative, if negative, now posititve

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H = -393.5 \text{ kJ}$

$$CO_2(g) \rightarrow C(s) + O_2(g)$$
 $\Delta H = -(-393.5) = +393.5 \text{ kJ}$

Standard Conditions

Standard State

The state of a material at a defined set of conditions.

- Pure gas at 1 atm pressure
- Pure solid or liquid in its most stable form at 1 atm pressure and temperature of interest (usually 25°C)
- Substances in a solution with a 1M concentration

Standard Enthalpy Change

Standard Enthalpy Change

 ΔH° - the Enthalpy change when all reactants and products are in their standard states.

That's what the ° symbol means – that it is under the standard conditions. You can have ΔH values that are not at standard conditions, then you leave the ° off.

Standard Enthalpy of Formation

Standard Enthalpy of Formation

ΔH°_f - the Enthalpy change for the reaction forming 1 mole of a pure compound from its constituent elements.

- Elements must be in their standard states
- ΔH°_f for a pure element in its standard state = 0 kJ/mol That includes diatomic gases! They are still pure elements!

Calculate ΔH for the combustion of methane, CH_4 :

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Step #1:

 CH_4 must appear on the reactant side, so we reverse reaction #1 and change the sign on ΔH .

 $CH_4 \rightarrow C + 2H_2$

#	Reaction	ΔH°
1	$C + 2H_2 \rightarrow CH_4$	-74.80 kJ
2	$C + O_2 \rightarrow CO_2$	-393.50 kJ
3	$H_2 + \frac{1}{2} O_2 \rightarrow H_2O$	-285.83 kJ

+74.80 kJ

Calculate ΔH for the combustion of methane, CH_4 :

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Step #2:

Keep reaction #2 unchanged, because CO₂ belongs on the product side

CH ₄	\rightarrow C	+ 2H ₂
C + C	$\rho_2 \rightarrow$	CO ₂

#	Reaction	ΔH°
1	$C + 2H_2 \rightarrow CH_4$	-74.80 kJ
2	$C + O_2 \rightarrow CO_2$	-393.50 kJ
3	$H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$	-285.83 kJ

+74.80 kJ

-393.50 kJ

Calculate ΔH for the combustion of methane, CH_4 :

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Step #3:

Use reaction #3 to get water as a product, but multiply it by 2 since you have 2 H₂O

	2 2 2
$CH_4 \rightarrow C + 2H_2$	+74.80 kJ
$C + O_2 \rightarrow CO_2$	-393.50 kJ
$2H_0 + O_0 \rightarrow 2H_0O$	2 x (-285 83 k.l)

Reaction

 $C + 2H_2 \rightarrow CH_4$

 $C + O_2 \rightarrow CO_2$

 $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$

#

 Λ H $^{\circ}$

-74.80 kJ

-393.50 kJ

-285.83 kJ

Calculate ΔH for the combustion of methane, CH_{Δ} :

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_1$

Step #4:

Cross out things that show up on both sides, then sum up your ΔH values

	3	$H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$	-285.83 kJ
$CH_4 \rightarrow C + 2H_2$	+7	'4.80 kJ	
$C + O_2 \rightarrow CO_2$	-39	93.50 kJ	
$2H_2 + O_2 \rightarrow 2H_2O$	2 x	((-285.83 k	J)

Reaction

 $C + 2H_2 \rightarrow CH_4$

 $C + O_2 \rightarrow CO_2$

 ΔH°

-74.80 kJ

-393.50 kJ

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_1$ -890.36 kJ

2 NOCI $(g) \rightarrow N_2(g) + O_2(g) + CI_2(g) \Delta H = ?$

Rxn #1)
$$\frac{1}{2}$$
 N₂ (g) + $\frac{1}{2}$ O₂ (g) \rightarrow NO (g) $\Delta H = 90.3$ kJ Rxn #2) NO (g) + $\frac{1}{2}$ Cl₂ (g) \rightarrow NOCl (g) $\Delta H = -38.6$ kJ

- -51.7 kJ
- **B** 51.7 kJ
- **C** -103.4 kJ
- **D** 103.4 kJ
- **E** 142.0 kJ

2 NOCI
$$(g) \rightarrow N_2(g) + O_2(g) + CI_2(g) \Delta H = ?$$

Rxn #1)
$$\frac{1}{2}$$
 N₂ (g) + $\frac{1}{2}$ O₂ (g) \rightarrow NO (g) $\Delta H = 90.3$ kJ Rxn #2) NO (g) + $\frac{1}{2}$ Cl₂ (g) \rightarrow NOCI (g) $\Delta H = -38.6$ kJ

C -103.4 kJ

D 103.4 kJ

E	142.0	kJ

Rxn #	How to change it	Rxn	ΔΗ
2	- and x 2	2 NOCI → 2NO + Cl_2	-2 (-38.6)
1	- and x 2	$2NO \rightarrow N_2 + O_2$	- (90.3)
		$2NOCI \rightarrow N_2 + O_2 + CI_2$	-103.4 kJ

FeO(s) + CO(g) \rightarrow Fe(s) + CO₂(g) Calculate standard enthalpy change

Rxn #1)
$$3\text{Fe}_2\text{O}_3 + \text{CO}(g) \rightarrow 2\text{Fe}_3\text{O}_4 + \text{CO}_2(g)$$
 $\Delta \text{H}^\circ = -47 \text{ kJ}$
Rxn #2) $\text{Fe}_2\text{O}_3 + 3\text{CO}(g) \rightarrow 2\text{Fe}(s) + 3\text{CO}_2(g)$ $\Delta \text{H}^\circ = -25 \text{ kJ}$
Rxn #3) $\text{Fe}_3\text{O}_4 + \text{CO}(g) \rightarrow 3\text{FeO}(s) + \text{CO}_2(g)$ $\Delta \text{H}^\circ = 19 \text{ kJ}$

- -53 kJ
- **B** -3 kJ
- **C** -41 kJ
- **D** 22 kJ
- **-11** kJ

FeO(s) + CO(g) \rightarrow Fe(s) + CO₂(g) Calculate standard enthalpy change

Rxn #1)
$$3Fe_2O_3 + CO(g) \rightarrow 2Fe_3O_4 + CO_2(g)$$
 $\Delta H^\circ = -47 \text{ kJ}$

Rxn #2)
$$Fe_2O_3 + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$
 $\Delta H^\circ = -25 \text{ kJ}$

Rxn #3)
$$Fe_3O_4 + CO(g) \rightarrow 3FeO(s) + CO_2(g)$$
 $\Delta H^\circ = 19 \text{ kJ}$

A	-53	kJ
		1 13

C	-41	kJ
---	-----	----

D	22	kJ
		1 13

E	-11	kJ

Rxn #	How to change it	Rxn	ΔΗ
3	- and x 1/3	FeO + $\frac{1}{3}$ CO ₂ $\rightarrow \frac{1}{3}$ Fe ₂ O ₄ + $\frac{1}{3}$ CO	- ¹ / ₃ (19)
1	- and x 1/6	$^{1/_{3}}\text{Fe}_{3}\text{O}_{4} + ^{1/_{3}}\text{CO}_{2} \rightarrow ^{1/_{2}}\text{Fe}_{2}\text{O}_{3} + ^{1/_{3}}\text{CO}_{2}$	- ¹ / ₆ (-47)
2	x 1/2	$^{1}/_{2}Fe_{2}O_{3} + ^{2}/_{2}CO \rightarrow Fe + ^{2}/_{2}CO_{2}$	¹ / ₂ (-25)
		FeO + CO \rightarrow Fe + CO ₂	-11 kJ

Its just a puzzle!

Sometimes it's a really hard puzzle... but it's still just a puzzle!
All the pieces are there,
you just have to figure out how to
put them together...unfortunately
no real "tricks" for how to figure
out which parts to put together.

