Dougherty Valley HS AP Chemistry Thermochemistry – Hess's Law		i WORKS	HEET #1 i
Name:	Date:	Period:	Seat #:

Show all work

1. Calculate the standard enthalpy change, ΔH_0 , for the formation of 1 mol of strontium carbonate (the material that gives the red color in fireworks) from its elements. (-1220 KJ)

Sr (s) C(graphite) $\frac{3}{2}$ O (g) \rightarrow SrCO (s)

(1) Sr (s) + $\frac{1}{2}$ O ₂ (g) \rightarrow SrO (s)	$\Delta H^{\circ} = -592 \text{ kJ}$	
(2) SrO (s) + CO ₂ (g) \rightarrow SrCO (s)	$\Delta H^\circ = -234 \text{ kJ}$	
(3) C(graphite) $O_2(g) \rightarrow CO(g)$	$\Delta H^\circ = -394 \text{ kJ}$	

2. The combination of coke and steam produces a mixture called coal gas, which can be used as a fuel or as a starting material for other reactions. If we assume coke can be represented by graphite, the equation for the production of coal gas is (+15.3 kJ)

$2 C (s) + 2 H_2O (g) \rightarrow CH_4 (g) + CO_2 (g)$

(1) $C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$	$\Delta H^{\circ} = 131.3 \text{ kJ}$
(2) CO (g) + H ₂ O (g) \rightarrow CO ₂ (g) + H ₂ (g)	$\Delta H^\circ = -41.2 \text{ kJ}$
(3) CH ₄ (g) + H ₂ O (g) \rightarrow 3 H ₂ (g) + CO (g)	$\Delta H^{\circ} = 206.1 \text{ kJ}$

3. One reaction involved in the conversion of iron ore to the metal is (-11 kJ)

FeO (s) + CO (g)
$$\rightarrow$$
 Fe (s) + CO (g)

(1) 3 Fe ₂ O ₃ (s) + CO (g) \rightarrow 2 Fe ₃ O ₄ (s) + CO ₂ (g)	$\Delta H^{\circ} = -47 \text{ kJ}$
(2) Fe ₂ O ₃ (s) + 3 CO (g) \rightarrow 2 Fe (s) + 3 CO ₂ (g)	$\Delta H^{\circ} = -25 \text{ kJ}$
(3) Fe ₃ O ₄ (s) + CO (g) \rightarrow 3 FeO (s) + CO ₂ (g)	$\Delta H^{\circ} = 19 \text{ kJ}$

[4] Find the ΔH for the reaction below, given the following reactions and subsequent ΔH values: PCls (g) \rightarrow PCl₃ (g) + Cl₂ (g)

$P_{4}(s) + 6Cl_{2}(g) \rightarrow 4PCl_{3}(g)$	$\Delta H = -2439 \text{ kJ}$
$4PCl_{5}(g) \rightarrow P_{4}(s) + 10Cl_{2}(g)$	$\Delta H = 3438 \text{ kJ}$

[5] Find the ΔH for the reaction below, given the following reactions and subsequent ΔH values:

$2\text{CO}_2(g) + \text{H}_2\text{O}(g) \rightarrow \text{C}_2\text{H}_2(g) + \frac{3}{2}\text{O}_2(g)$
$C_{2}H_{2}(g) + 2H_{2}(g) \rightarrow C_{2}H_{6}(g)$ $\Delta H = -94.5 \text{ kJ}$
$H_2O(g) \rightarrow H_2(g) + \frac{1}{2}O2(g)$ $\Delta H = 71.2 \text{ kJ}$
$C_{2}H_{6}(g) + O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(g)$ $\Delta H = -283 \text{ kJ}$

J	
ſ	

Answer = 249.8 kJ

[6] Find the ΔH for the reaction below, given the following reactions and subsequent ΔH values: N₂H₄ (*l*) + H₂ (σ) \rightarrow 2NH₃ (σ)

$N_2H_4(l) +$	• H2 (g) –	→ 2NH3 (g)
---------------	------------	------------

112114(t) + 112(g) + 21(113(g))	
$N_{2}H_{4}\left(l\right)+CH_{4}O\left(l\right)\rightarrow CH_{2}O\left(g\right)+N_{2}\left(g\right)+3H_{2}\left(g\right)$	$\Delta H = -37 \text{ kJ}$
$N_{2}\left(g\right)+3H_{2}\left(g\right)\rightarrow2NH_{3}\left(g\right)$	$\Delta H = -46 \text{ kJ}$
$CH_4O(l) \rightarrow CH_2O(g) + H_2(g)$	$\Delta H = -65 \text{ kJ}$

[7] Find the ΔH for the reaction below, given the following reactions an<u>d subsequent ΔH values:</u>

$\mathrm{H2SO4}~(l) \rightarrow \mathrm{SO3}~(\mathrm{g}) + \mathrm{H2O}(\mathrm{g})$	
$\mathrm{H2S}(\mathrm{g}) + \mathrm{2O_2}\left(\mathrm{g}\right) \rightarrow \mathrm{H2SO_4}\left(l\right)$	$\Delta H = -235.5 \text{ kJ}$
$\mathrm{H_2S}(g) + \mathrm{2O_2}\left(g\right) \rightarrow \mathrm{SO_3}\left(g\right) + \mathrm{H_2O}(l)$	$\Delta H = -207 \text{ kJ}$
$H_2O(l) \rightarrow H_2O(g)$	$\Delta H = 44 \text{ kJ}$

[8] Find the ΔH for the reaction below, given the following reactions an<u>d subsequent ΔH values:</u>

 $2C_2H_4O(l) + 2H_2O(l) \rightarrow 2C_2H_6O(l) + O_2(g)$

$C_{2}H_{6}O(l) + 3O_{2}(g) \rightarrow 2CO_{2}(g) + 3H_{2}O(l)$	$\Delta H = -685.5 \text{ kJ}$
$C_{2}H_{4}O(l) + O_{2}(g) \rightarrow 2CO_{2}(g) + 2H_{2}O(l)$	$\Delta H = -583.5 \text{ kJ}$