I	WORKSHEET #4	

Name:	Date:	Period:	Seat #:
Show all work	$\Delta H^{\circ} = \Sigma \Delta H_{f}^{\circ} \ products -$	$\Sigma \Delta H_f^{\circ}$ reactants	
[1] a) Calculate the amount of h $2N_2(g) + O_2(g) \rightarrow 2N_2O(g)$	heat transferred when 10.00 g of N ₂ O(g) is forme $\Delta H_{rxn} = +163.2 \text{ kJ}$	d by the following reaction:	
b) Draw an energy diagram	for this process.		18.54 kJ
	0		
[2] Predict the value for ΔH a) Br ₂ (g)	\int_{f}^{∞} for the following scenarios and explain why:		
b) Br2(<i>l</i>)			
c) I2(g)			
d) I2(s)			

 [3] Calculate the ΔH_{rxn}° for the following reaction:

 C2H4(g) + 3O₂(g) \rightarrow 2CO₂(g) + 2H₂O(l)
 ΔH_{f}° C2H4(g) = 226.6 kJ/mol

 ΔH_{f}° CO₂(g) = -393.5 kJ/mol

 ΔH_{f}° H₂O(l) = -285.8 kJ/mol

[4] A 5.00 g sample of liquid water at 25.0°C is heated by the addition of 84.0 J of energy. Determine the final temperature of the water in °C? (The specific heat capacity of the liquid is 4.18 J/g° C).

29.0°C

-1584.2 kJ/mol

[6] Propane is a hydrocarbon that is commonly used as a fuel for cooking. Propane's formula is C₃H₈. a) Write a balanced equation for the complete combustion of propane gas.

b) Calculate the volume of air at 30°C and 1.00 atm that is needed to burn completely 10.0 g of propane. Assume that air is 21.0% O₂ by volume.

134 L air

c) The heat of combustion ($\Delta H_{combustion}^{\circ}$) is -2,220.1 kJ/mol. Calculate the heat of formation, ΔH_{f}° , of propane given that ΔH_{f}° of H2O(*l*) is -285.3 kJ/mol and ΔH_{f}° of CO2(g) is -393.5 kJ/mol.

-101.6 kJ/mol

d) Assuming that all of the heat evolved burning 10.0 g propane is transferred to 8.00 kg of water (specific heat = $4.184 \text{ J/g}^{\circ}\text{C}$), calculate the increase in temperature of the water.

15.0°C is ΔT