Thermochem FRQs

WORKSHEET #6

2003

- 7. Answer the following questions that relate to the chemistry of nitrogen.
 - (a) Two nitrogen atoms combine to form a nitrogen molecule, as represented by the following equation.

$$2 N(g) \rightarrow N_2(g)$$

Using the table of average bond energies below, determine the enthalpy change, ΔH , for the reaction.

Bond	Average Bond Energy (kJ mol ⁻¹)
N N	160
N = N	420
$N \equiv N$	950

2003B

3.In another experiment, liquid heptane, $C_7H_{16}(l)$, is completely combusted to produce $CO_2(g)$ and $H_2O(l)$, as represented by the following equation.

$$C_7H_{16}(l) + 11 O_2(g) \rightarrow 7 CO_2(g) + 8 H_2O(l)$$

The heat of combustion, ΔH_{comb}° , for one mole of $C_7H_{16}(l)$ is -4.85×10^3 kJ.

(c) Using the information in the table below, calculate the value of ΔH_f° for $C_7H_{16}(l)$ in kJ mol⁻¹.

Compound	ΔH_f° (kJ mol ⁻¹)	
$CO_2(g)$	-393.5	
$H_2O(l)$	-285.8	

- (d) A 0.0108 mol sample of C₇H₁₆(l) is combusted in a bomb calorimeter.
 - (i) Calculate the amount of heat released to the calorimeter.
 - (ii) Given that the total heat capacity of the calorimeter is 9.273 kJ °C ⁻¹, calculate the temperature change of the calorimeter.

$$\mathrm{CO}(g) + \frac{1}{2}\mathrm{O}_2(g) \, \to \, \mathrm{CO}_2(g)$$

2006

- 2. The combustion of carbon monoxide is represented by the equation above.
 - (a) Determine the value of the standard enthalpy change, ΔH_{rxn}° , for the combustion of CO(g) at 298 K using the following information.

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$$
 $\Delta H_{298}^{\circ} = -110.5 \text{ kJ mol}^{-1}$

$$\mathrm{C}(s) + \mathrm{O}_2(g) \rightarrow \mathrm{CO}_2(g)$$
 $\Delta H_{298}^{\circ} = -393.5 \,\mathrm{kJ \; mol^{-1}}$

7. Answer the following questions about thermodynamics. Skip part (d) for now.

2005B

Substance	Combustion Reaction	Enthalpy of Combustion, ΔH_{comb}° , at 298 K (kJ mol ⁻¹)
H ₂ (g)	$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$	-290
C(s)	$C(s) + O_2(g) \rightarrow CO_2(g)$	-390
CH ₃ OH(l)		-730

- (a) In the empty box in the table above, write a balanced chemical equation for the complete combustion of one mole of CH₃OH(*l*). Assume products are in their standard states at 298 K. Coefficients do not need to be whole numbers.
- (b) On the basis of your answer to part (a) and the information in the table, determine the enthalpy change for the reaction $C(s) + H_2(g) + H_2O(l) \rightarrow CH_3OH(l)$.
- (c) Write the balanced chemical equation that shows the reaction that is used to determine the enthalpy of formation for <u>one</u> mole of $CH_3OH(l)$.
- (d) Predict the sign of ΔS° for the combustion of $H_2(g)$. Explain your reasoning.
- (e) On the basis of bond energies, explain why the combustion of $H_2(g)$ is exothermic.