Acids and Bases ...Weak...

<u>A Weak Acid Equilibrium Problem</u>

What is the pH of a 0.50 M solution of acetic acid, $HC_2H_3O_2$, $K_a = 1.8 \times 10^{-5}$?

Step #1: Write the dissociation equation

 $HC_2H_3O_2 \Rightarrow C_2H_3O_2^- + H^+$

What is the pH of a 0.50 M solution of acetic acid, $HC_2H_3O_2$, $K_a = 1.8 \times 10^{-5}$?

```
Step #2: ICE it!
```

	$HC_2H_3O_2 \leftrightarrows$	$C_2H_3O_2$	2 ⁻ + H⁺
I	0.50	0	0
С	- ×	+X	+X
E	0.50 - x	×	×

What is the pH of a 0.50 M solution of acetic acid, $HC_2H_3O_2$, $K_a = 1.8 \times 10^{-5}$?

Step #3: Set up the law of mass action

 $HC_{2}H_{3}O_{2} \leftrightarrows C_{2}H_{3}O_{2}^{-} + H^{+}$ $E \quad 0.50 - x \qquad x \qquad x$

$$1.8 x 10^{-5} = \frac{(x)(x)}{(0.50 - x)} \cong \frac{x^2}{(0.50)}$$

What is the pH of a 0.50 M solution of acetic acid, $HC_2H_3O_2$, $K_a = 1.8 \times 10^{-5}$?

Step #4: Solve for x, which is also [H⁺]

$$HC_{2}H_{3}O_{2} \Leftrightarrow C_{2}H_{3}O_{2}^{-} + H^{+}$$

E 0.50 - x x x

$$1.8 x 10^{-5} = \frac{x^2}{(0.50)} \quad [\mathbf{H}^+] = 3.0 \text{ x } 10^{-3} \text{ M}$$

What is the pH of a 0.50 M solution of acetic acid, $HC_2H_3O_2$, $K_a = 1.8 \times 10^{-5}$?

Step #5: Convert [H⁺] to pH

 $HC_2H_3O_2 \implies C_2H_3O_2^- + H^+$ E 0.50 - x x x x

 $pH = -\log(3.0 x 10^{-3}) = 4.52$

Reaction of Weak Bases with Water

The base reacts with water, producing its conjugate acid and hydroxide ion:

 $CH_3NH_2 + H_2O \leftrightarrows CH_3NH_3^+ + OH^ K_b = 4.38 \times 10^{-4}$

$$K_{b} = 4.38 \times 10^{-4} = \frac{[CH_{3}NH_{3}^{+}][OH^{-}]}{[CH_{3}NH_{2}]}$$

K_b for Some Common Weak Bases

Many students struggle with identifying weak bases and their conjugate acids. What patterns do you see that may help you?

Base	Formula	Conjugate Acid	K _b
Ammonia	NH ₃	NH₄⁺	1.8 × 10 ⁻⁵
Methylamine	CH_3NH_2	CH₃NH₃⁺	4.38 × 10 ⁻⁴
Ethylamine	$C_2H_5NH_2$	C₂H₅NH₃⁺	5.6 × 10 ⁻⁴
Diethylamine	$(C_2H_5)_2NH$	$(C_2H_5)_2NH_2^+$	1.3×10^{-3}
Triethylamine	$(C_2H_5)_3N$	(C₂H₅)₃NH⁺	4.0 × 10 ⁻⁴
Hydroxylamine	HONH ₂	HONH ₃ ⁺	1.1×10^{-8}
Hydrazine	H_2NNH_2	H₂NNH₃⁺	3.0 × 10 ⁻⁶
Aniline	$C_6H_5NH_2$	C ₆ H ₅ NH ₃ ⁺	3.8 x 10 ⁻¹⁰
Pyridine	C_5H_5N	C₅H₅NH⁺	1.7 × 10 ⁻⁹

Reaction of Weak Bases with Water

The generic reaction for a base reacting with water, producing its conjugate acid and hydroxide ion:

$B + H_2O \leftrightarrows BH^+ + OH^ K_b = \frac{[BH^+][OH^-]}{[B]}$

(Yes, all weak bases do this – DO NOT endeavor to make this complicated!)

- What is the pH of a 0.50 M solution of ammonia, NH_3 , $K_b = 1.8 \times 10^{-5}$?
- Step #1: Write the equation for the reaction $NH_3 + H_2O \implies NH_4^+ + OH^-$

What is the pH of a 0.50 M solution of ammonia, NH_3 , $K_b = 1.8 \times 10^{-5}$?

Step #2: ICE it!

	$NH_3 + H_2O \leftrightarrows$	NH_4^+	+ OH-
I	0.50	0	0
С	- X	+X	+X
Ε	D.50 - x	×	×

What is the pH of a 0.50 M solution of ammonia, NH_3 , $K_b = 1.8 \times 10^{-5}$?

Step #3: Set up the law of mass action

 $NH_3 + H_2O \leftrightarrows NH_4^+ + OH^-$ E 0.50 - x x x

$$1.8 x 10^{-5} = \frac{(x)(x)}{(0.50 - x)} \cong \frac{x^2}{(0.50)}$$

What is the pH of a 0.50 M solution of ammonia, NH_3 , $K_b = 1.8 \times 10^{-5}$?

Step #4: Solve for x, which is also [OH-]

 $[OH^{-}] = 3.0 \times 10^{-3} M$

- $NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$
- E 0.50 x x x

$$1.8 \, x 10^{-5} = \frac{x^2}{(0.50)}$$

What is the pH of a 0.50 M solution of ammonia, NH_3 , $K_b = 1.8 \times 10^{-5}$?

Step #5: Convert [OH-] to pH

- $NH_3 + H_2O \leftrightarrows NH_4^+ + OH^-$ E 0.50 - x x x
 - $pOH = -\log(3.0 x 10^{-3}) = 4.52$

pH = 14.00 - pOH = 9.48