Applications of Aqueous Equilibria HH

Buffered Solutions

- A solution that resists a change in pH when either hydroxide ions or protons are added.
- Buffered solutions contain either:
 - > A weak acid and its salt
 - > A weak base and its salt

Acid/Salt Buffering Pairs

The salt will contain the anion of the acid, and the cation of a strong base (NaOH, KOH)

Weak Acid	Formula of the acid	Example of a salt of the weak acid
Hydrofluoric	HF	KF – Potassium fluoride
Formic	НСООН	KHCOO - Potassium formate
Benzoic	C ₆ H ₅ COOH	NaC ₆ H ₅ COO - Sodium benzoate
Acetic	CH ₃ COOH	NaH₃COO - Sodium acetate
Carbonic	H ₂ CO ₃	NaHCO ₃ - Sodium bicarbonate
Propanoic	HC ₃ H ₅ O ₂	NaC ₃ H ₅ O ₂ - Sodium propanoate
Hydrocyanic	HCN	KCN - potassium cyanide

Base/Salt Buffering Pairs

The salt will contain the cation of the base, and the anion of a strong acid (HCI, HNO_3)

Base	Formula of the base	Example of a salt of the weak acid
Ammonia	NH ₃	NH ₄ Cl - ammonium chloride
Methylamine	CH ₃ NH ₂	CH ₃ NH ₃ Cl - methylammonium chloride
Ethylamine	C ₂ H ₅ NH ₂	$C_2H_5NH_3NO_3$ - ethylammonium nitrate
Aniline	$C_6H_5NH_2$	C ₆ H ₅ NH ₃ Cl - aniline hydrochloride
Pyridine	C_5H_5N	C ₅ H ₅ NHCl - pyridine hydrochloride

Calculate the [H⁺] in a solution that is 0.10 M in NaF and 0.20 M in HF. ($K_a = 7.2 \times 10^{-4}$)

7.
$$2E^{-4} = \frac{[H^+][0.10]}{[0.2]};$$

 $[H^+] = 1.44E^{-3}M$

Titration of an Unbuffered Solution

Titration of a Buffered Solution

Comparing Results

Comparing Results

Unbuffered

6

0.00

5.00

10.00

15.00

20.00

milliliters NaOH (0.10 M)

25.00

Buffered

In what ways are the graphs different? ❖In what ways are the graphs similar?

45.00

35.00

30.00

40.00

Henderson-Hasselbalch Equation

$$pH = pK_a + \log\left(\frac{[A^-]}{[HA]}\right) = pK_a + \log\left(\frac{[base]}{[acid]}\right)$$

$$pOH = pK_b + \log\left(\frac{[BH^+]}{[B]}\right) = pK_b + \log\left(\frac{[acid]}{[base]}\right)$$

Calculate the [H⁺] in a solution that is 0.10 M in NaF and 0.20 M in HF. ($K_0 = 7.2 \times 10^{-4}$)

A 7.2E⁻⁴ M
$$pH = pKa + Log \frac{[Base]}{[Acid]};$$

B 2.0 M $pH = -log[7.2E^{-4}] + log \frac{[0.1M]}{[0.2M]}$
C 1.4E⁻³ M = 2.84 $\gg [H^+] = 0.00144M$

B 2.0 M
$$pH = -log[7.2E^{-4}] + log \frac{[0.1M]}{[0.2M]}$$

C 1.4E⁻³ M =
$$2.84 \gg [H^+] = 0.00144M$$

- D 0.20 M
- E none of these