Applications of Aqueous Equilibria ### K_{sp} Values for Some Salts at 25°C | Name | Formula | K _{sp} | |---------------------|-----------------------------------|-------------------------| | Barium carbonate | BaCO ₃ | 2.6 x 10 ⁻⁹ | | Barium chromate | BaCrO ₄ | 1.2 x 10 ⁻¹⁰ | | Barium sulfate | BaSO ₄ | 1.1 x 10 ⁻¹⁰ | | Calcium carbonate | CaCO ₃ | 5.0 x 10 ⁻⁹ | | Calcium oxalate | CaC ₂ O ₄ | 2.3 x 10 ⁻⁹ | | Calcium sulfate | CaSO ₄ | 7.1 x 10 ⁻⁵ | | Copper(I) iodide | CuI | 1.3 x 10 ⁻¹² | | Copper(II) iodate | Cu(IO ₃) ₂ | 6.9 x 10 ⁻⁸ | | Copper(II) sulfide | CuS | 6.0 x 10 ⁻³⁷ | | Iron(II) hydroxide | Fe(OH) ₂ | 4.9 x 10 ⁻¹⁷ | | Iron(II) sulfide | FeS | 6.0 x 10 ⁻¹⁹ | | Iron(III) hydroxide | Fe(OH) ₃ | 2.6 x 10 ⁻³⁹ | | Lead(II) bromide | PbBr ₂ | 6.6 x 10 ⁻⁶ | | Lead(II) chloride | PbCl ₂ | 1.2 x 10 ⁻⁵ | | Lead(II) iodate | Pb(IO ₃) ₂ | 3.7 x 10 ⁻¹³ | | Lead(II) iodide | PbI ₂ | 8.5 x 10 ⁻⁹ | | Lead(II) sulfate | PbSO ₄ | 1.8 x 10 ⁻⁸ | | Name | Formula | K _{sp} | |---------------------|-----------------------------------|-------------------------| | Lead(II) bromide | PbBr ₂ | 6.6 x 10 ⁻⁶ | | Lead(II) chloride | PbCl ₂ | 1.2 x 10 ⁻⁵ | | Lead(II) iodate | Pb(IO ₃) ₂ | 3.7 x 10 ⁻¹³ | | Lead(II) iodide | PbI ₂ | 8.5 x 10 ⁻⁹ | | Lead(II) sulfate | PbSO ₄ | 1.8 x 10 ⁻⁸ | | Magnesium carbonate | MgCO ₃ | 6.8 x 10 ⁻⁶ | | Magnesium hydroxide | Mg(OH) ₂ | 5.6 x 10 ⁻¹² | | Silver bromate | AgBrO ₃ | 5.3 x 10 ⁻⁵ | | Silver bromide | AgBr | 5.4 x 10 ⁻¹³ | | Silver carbonate | Ag ₂ CO ₃ | 8.5 x 10 ⁻¹² | | Silver chloride | AgCl | 1.8 x 10 ⁻¹⁰ | | Silver chromate | Ag ₂ CrO ₄ | 1.1 x 10 ⁻¹² | | Silver iodate | AgIO ₃ | 3.2 x 10 ⁻⁸ | | Silver iodide | AgI | 8.5 x 10 ⁻¹⁷ | | Strontium carbonate | SrCO ₃ | 5.6 x 10 ⁻¹⁰ | | Strontium fluoride | SrF ₂ | 4.3 x 10 ⁻⁹ | | Strontium sulfate | SrSO ₄ | 3.4 x 10 ⁻⁷ | | Zinc sulfide | ZnS | 2.0 x 10 ⁻²⁵ | #### Solving Solubility Problems For the salt AgI at 25°C, $K_{sp} = 1.5 \times 10^{-16}$ AgI(s) \rightarrow Ag⁺(aq) + I⁻(aq) | I | 0 | 0 | |---|----|------------| | С | +X | + × | | Е | × | X | $$1.5 \times 10^{-16} = x^2$$ $x = \text{solubility of } AgI \text{ in mol/L} = 1.2 \times 10^{-8} \text{ M}$ #### Solving Solubility Problems For the salt $PbCl_2$ at $25^{\circ}C$, $K_{sp} = 1.6 \times 10^{-5}$ $PbCl_2(s) \rightarrow Pb^{2+}(aq) + 2Cl^{-}(aq)$ | I | 0 | 0 | |---|----|-----| | С | +X | +2x | | E | × | 2x | $$1.6 \times 10^{-5} = (x)(2x)^2 = 4x^3$$ \times = solubility of PbCl₂ in mol/L = 1.6 \times 10⁻² M #### Solving Solubility with a Common Ion For the salt AgI at $25^{\circ}C$, $K_{sp} = 1.5 \times 10^{-16}$ What is its solubility in 0.05 M NaI? $$AgI(s) \rightarrow Ag^{+}(aq) + I^{-}(aq)$$ | I | 0 | 0.05 | |---|----|--------| | С | +X | 0.05+x | | E | × | 0.05+x | $$1.5 \times 10^{-16} = (x)(0.05+x) \cong (x)(0.05)$$ \times = solubility of AgI in mol/L = 3.0 \times 10⁻¹⁵ M [14] When solid BaF₂ is added to H₂O the following equilibrium is established. $$BaF_2(s) \implies Ba^{2+}(aq) + 2 F(aq) \quad K_{sp} = 1.5 \times 10^{-6} \text{ at } 25 \text{ °C}$$ - Calculate the molar solubility of barium fluoride at 25 °C. - b. Explain how adding each of the following substances affects the solubility of BaF₂ in water. - i. $0.10 \text{ M Ba}(NO_3)_2$ - ii. 0.10 M HNO₃ - c. In an experiment to determine the K_{sp} of PbF₂ a student starts with 0.10 M Pb(NO₃)₂ and 0.10 M KF and uses the method of serial dilutions to find the lowest [Pb²⁺] and [F̄] that form a precipitate when mixed. If the student uses the concentration of the ions in the combined solution to determine K_{sp} , will the value of K_{sp} calculated be too large, too small or just right? Explain. $$K_{\rm sp}$$ for PbF₂ = 4.0×10^{-8} - d. i. In a solution of 0.010 M barium nitrate and 0.010 M lead(II) nitrate, which will precipitate first, BaF₂ or PbF₂, as NaF(s) is added? Assume volume changes are negligible. Explain (support your answer with calculations). - ii. When the more soluble fluoride begins to precipitate, what is the concentration of the cation for the less soluble fluoride that remains in solution? - a. If $S = \text{molar solubility of BaF}_2$ (s), then $[Ba^{2^+}] = S$, $[F^-] = 2S$ $K_{sp} = [Ba^{2^+}][F^-]^2 = (S)(2S)^2 = 4S^3 = 1.5 \times 10^{-6}$ S = 0.00721 mol/L - b. i. Adding Ba²⁺ ion will decrease the molar solubility of BaF₂ due to the common ion effect. - ii. Adding H⁺ will increase the molar solubility of BaF₂ as the F⁻ ion will react with H⁺ to form HF, thereby causing more BaF₂ to dissolve by Le Chatelier's Principle. - c. The calculated K_{sp} will be too large because the student is relying on seeing the formation of a precipitate at the moment that Q exceeds K_{sp} . The student will miss the exact moment that happens, so the calculated value of K_{sp} will be too large. - Other possible issues: Protolysis will decrease the concentration of fluoride, so more fluoride will need to be added to cause precipitation; therefore measured K_{sp} will be too large. Likewise, some complex ions such as PbF⁺ or PbF₂ (aq) may form, again leading to an experimental value that is too large. - d. i. As both BaF₂ and PbF₂ are 1:2 compounds, and the concentrations of the metal ions are both 0.010 M, you can tell that PbF₂ will precipitate first, because it has the lower K_{sp} . For calculations to support this: For PbF₂, $4.0 \times 10^{-8} = (0.01)[F^-]^2$ $[F^-]^2 = 4.0 \times 10^{-6}$ $[F^-] = 2.0 \times 10^{-3}$ M For BaF₂, $1.5 \times 10^{-6} = (0.01)[F^-]^2$ $[F^-]^2 = 1.5 \times 10^{-4}$ $[F^-] = 1.2 \times 10^{-2}$ M The PbF₂ will precipitate first because a lower value for the concentration of fluoride is needed. - ii. From part (i) we know that the BaF₂ precipitates second, when the [F⁻] reaches 1.2 x 10^{-2} M Since PbF₂ (s) is present, then [Pb²⁺][F⁻]² = $K_{\rm sp}$ = 4.0 x 10^{-8} [Pb²⁺](1.2 x 10^{-2})² = 4.0 × 10^{-8} [Pb²⁺] = 2.8 × 10^{-4} M The molar solubility of PbI₂ is 1.50×10^{-3} M. Calculate the value of $K_{\rm sp}$ for PbI₂. - A 3.38E-9 - **B** 4.50E⁻⁶ - C 1.35E-8 - D 1.50E-3 - E none of these Precipitation and Qualitative Analysis #### FYI - Complex Ions A <u>Complex ion</u> is a charged species composed of: - 1. A metallic cation - 2. <u>Ligands</u> Lewis bases that have a lone electron pair that can form a covalent bond with an empty orbital belonging to the metallic cation ## NH_3 , CN^- , and H_2O are Common Ligands #### Coordination Number - ☐ Coordination number refers to the number of ligands attached to the cation - □ 2, 4, and 6 are the most common coordination numbers | Coordination number | Example(s) | |---------------------|---| | 2 | $Ag(NH_3)_2^+$ | | 4 | $CoCl_4^{2-}$ $Cu(NH_3)_4^{2+}$ | | 6 | $Co(H_2O)_6^{2+}$ Ni(NH ₃) ₆ ²⁺ | #### Complex Ions and Solubility $$AgCl(s) \leftrightarrows Ag^{+} + Cl^{-}$$ $K_{sp} = 1.6 \times 10^{-10}$ $Ag^{-} + NH_{3} \leftrightarrows Ag(NH_{3})^{+}$ $K_{1} = 2.1 \times 10^{3}$ $Ag(NH_{3})^{+} NH_{3} \leftrightarrows Ag(NH_{3})_{2}^{+}$ $K_{2} = 8.2 \times 10^{3}$ $$AgCl + 2NH_3 \Rightarrow Ag(NH_3)_2^+ + Cl^- K = K_{sp} \cdot K_1 \cdot K_2$$ $$K = 2.8 \times 10^{-3} = \frac{[Ag(NH_3)_2^+][Cl^-]}{[NH_3]^2}$$