Applications of Aqueous Equilibria

K_{sp} Values for Some Salts at 25°C

Name	Formula	K _{sp}
Barium carbonate	BaCO ₃	2.6 x 10 ⁻⁹
Barium chromate	BaCrO ₄	1.2 x 10 ⁻¹⁰
Barium sulfate	BaSO ₄	1.1 x 10 ⁻¹⁰
Calcium carbonate	CaCO ₃	5.0 x 10 ⁻⁹
Calcium oxalate	CaC ₂ O ₄	2.3 x 10 ⁻⁹
Calcium sulfate	CaSO ₄	7.1 x 10 ⁻⁵
Copper(I) iodide	CuI	1.3 x 10 ⁻¹²
Copper(II) iodate	Cu(IO ₃) ₂	6.9 x 10 ⁻⁸
Copper(II) sulfide	CuS	6.0 x 10 ⁻³⁷
Iron(II) hydroxide	Fe(OH) ₂	4.9 x 10 ⁻¹⁷
Iron(II) sulfide	FeS	6.0 x 10 ⁻¹⁹
Iron(III) hydroxide	Fe(OH) ₃	2.6 x 10 ⁻³⁹
Lead(II) bromide	PbBr ₂	6.6 x 10 ⁻⁶
Lead(II) chloride	PbCl ₂	1.2 x 10 ⁻⁵
Lead(II) iodate	Pb(IO ₃) ₂	3.7 x 10 ⁻¹³
Lead(II) iodide	PbI ₂	8.5 x 10 ⁻⁹
Lead(II) sulfate	PbSO ₄	1.8 x 10 ⁻⁸

Name	Formula	K _{sp}
Lead(II) bromide	PbBr ₂	6.6 x 10 ⁻⁶
Lead(II) chloride	PbCl ₂	1.2 x 10 ⁻⁵
Lead(II) iodate	Pb(IO ₃) ₂	3.7 x 10 ⁻¹³
Lead(II) iodide	PbI ₂	8.5 x 10 ⁻⁹
Lead(II) sulfate	PbSO ₄	1.8 x 10 ⁻⁸
Magnesium carbonate	MgCO ₃	6.8 x 10 ⁻⁶
Magnesium hydroxide	Mg(OH) ₂	5.6 x 10 ⁻¹²
Silver bromate	AgBrO ₃	5.3 x 10 ⁻⁵
Silver bromide	AgBr	5.4 x 10 ⁻¹³
Silver carbonate	Ag ₂ CO ₃	8.5 x 10 ⁻¹²
Silver chloride	AgCl	1.8 x 10 ⁻¹⁰
Silver chromate	Ag ₂ CrO ₄	1.1 x 10 ⁻¹²
Silver iodate	AgIO ₃	3.2 x 10 ⁻⁸
Silver iodide	AgI	8.5 x 10 ⁻¹⁷
Strontium carbonate	SrCO ₃	5.6 x 10 ⁻¹⁰
Strontium fluoride	SrF ₂	4.3 x 10 ⁻⁹
Strontium sulfate	SrSO ₄	3.4 x 10 ⁻⁷
Zinc sulfide	ZnS	2.0 x 10 ⁻²⁵

Solving Solubility Problems

For the salt AgI at 25°C, $K_{sp} = 1.5 \times 10^{-16}$ AgI(s) \rightarrow Ag⁺(aq) + I⁻(aq)

I	0	0
С	+X	+ ×
Е	×	X

$$1.5 \times 10^{-16} = x^2$$

 $x = \text{solubility of } AgI \text{ in mol/L} = 1.2 \times 10^{-8} \text{ M}$

Solving Solubility Problems

For the salt $PbCl_2$ at $25^{\circ}C$, $K_{sp} = 1.6 \times 10^{-5}$ $PbCl_2(s) \rightarrow Pb^{2+}(aq) + 2Cl^{-}(aq)$

I	0	0
С	+X	+2x
E	×	2x

$$1.6 \times 10^{-5} = (x)(2x)^2 = 4x^3$$

 \times = solubility of PbCl₂ in mol/L = 1.6 \times 10⁻² M

Solving Solubility with a Common Ion

For the salt AgI at $25^{\circ}C$, $K_{sp} = 1.5 \times 10^{-16}$ What is its solubility in 0.05 M NaI?

$$AgI(s) \rightarrow Ag^{+}(aq) + I^{-}(aq)$$

I	0	0.05
С	+X	0.05+x
E	×	0.05+x

$$1.5 \times 10^{-16} = (x)(0.05+x) \cong (x)(0.05)$$

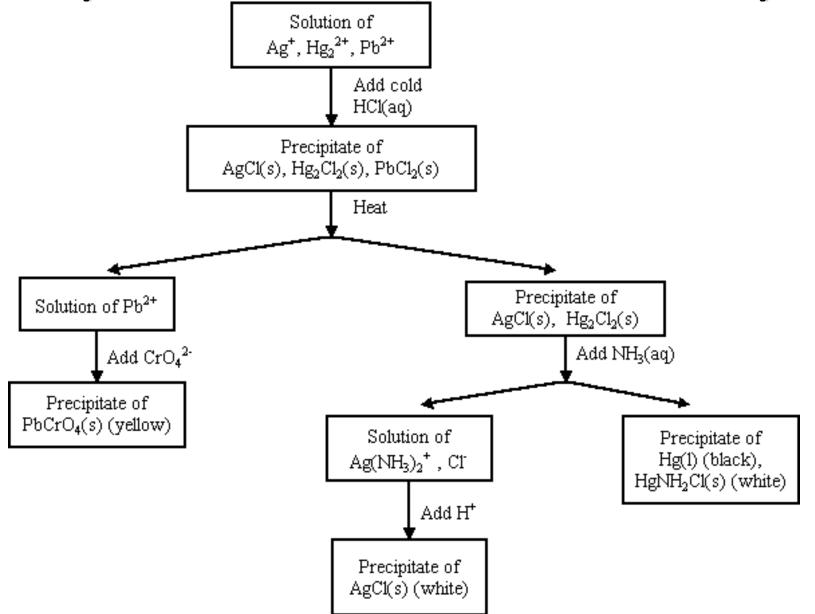
 \times = solubility of AgI in mol/L = 3.0 \times 10⁻¹⁵ M

[14] When solid BaF₂ is added to H₂O the following equilibrium is established.

$$BaF_2(s) \implies Ba^{2+}(aq) + 2 F(aq) \quad K_{sp} = 1.5 \times 10^{-6} \text{ at } 25 \text{ °C}$$

- Calculate the molar solubility of barium fluoride at 25 °C.
- b. Explain how adding each of the following substances affects the solubility of BaF₂ in water.
 - i. $0.10 \text{ M Ba}(NO_3)_2$
 - ii. 0.10 M HNO₃
- c. In an experiment to determine the K_{sp} of PbF₂ a student starts with 0.10 M Pb(NO₃)₂ and 0.10 M KF and uses the method of serial dilutions to find the lowest [Pb²⁺] and [F̄] that form a precipitate when mixed. If the student uses the concentration of the ions in the combined solution to determine K_{sp} , will the value of K_{sp} calculated be too large, too small or just right? Explain.

$$K_{\rm sp}$$
 for PbF₂ = 4.0×10^{-8}


- d. i. In a solution of 0.010 M barium nitrate and 0.010 M lead(II) nitrate, which will precipitate first, BaF₂ or PbF₂, as NaF(s) is added? Assume volume changes are negligible. Explain (support your answer with calculations).
 - ii. When the more soluble fluoride begins to precipitate, what is the concentration of the cation for the less soluble fluoride that remains in solution?

- a. If $S = \text{molar solubility of BaF}_2$ (s), then $[Ba^{2^+}] = S$, $[F^-] = 2S$ $K_{sp} = [Ba^{2^+}][F^-]^2 = (S)(2S)^2 = 4S^3 = 1.5 \times 10^{-6}$ S = 0.00721 mol/L
- b. i. Adding Ba²⁺ ion will decrease the molar solubility of BaF₂ due to the common ion effect.
 - ii. Adding H⁺ will increase the molar solubility of BaF₂ as the F⁻ ion will react with H⁺ to form HF, thereby causing more BaF₂ to dissolve by Le Chatelier's Principle.
- c. The calculated K_{sp} will be too large because the student is relying on seeing the formation of a precipitate at the moment that Q exceeds K_{sp} . The student will miss the exact moment that happens, so the calculated value of K_{sp} will be too large.
 - Other possible issues: Protolysis will decrease the concentration of fluoride, so more fluoride will need to be added to cause precipitation; therefore measured K_{sp} will be too large. Likewise, some complex ions such as PbF⁺ or PbF₂ (aq) may form, again leading to an experimental value that is too large.
- d. i. As both BaF₂ and PbF₂ are 1:2 compounds, and the concentrations of the metal ions are both 0.010 M, you can tell that PbF₂ will precipitate first, because it has the lower K_{sp} . For calculations to support this: For PbF₂, $4.0 \times 10^{-8} = (0.01)[F^-]^2$ $[F^-]^2 = 4.0 \times 10^{-6}$ $[F^-] = 2.0 \times 10^{-3}$ M For BaF₂, $1.5 \times 10^{-6} = (0.01)[F^-]^2$ $[F^-]^2 = 1.5 \times 10^{-4}$ $[F^-] = 1.2 \times 10^{-2}$ M The PbF₂ will precipitate first because a lower value for the concentration of fluoride is needed.
 - ii. From part (i) we know that the BaF₂ precipitates second, when the [F⁻] reaches 1.2 x 10^{-2} M Since PbF₂ (s) is present, then [Pb²⁺][F⁻]² = $K_{\rm sp}$ = 4.0 x 10^{-8} [Pb²⁺](1.2 x 10^{-2})² = 4.0 × 10^{-8} [Pb²⁺] = 2.8 × 10^{-4} M

The molar solubility of PbI₂ is 1.50×10^{-3} M. Calculate the value of $K_{\rm sp}$ for PbI₂.

- A 3.38E-9
- **B** 4.50E⁻⁶
- C 1.35E-8
- D 1.50E-3
- E none of these

Precipitation and Qualitative Analysis



FYI - Complex Ions

A <u>Complex ion</u> is a charged species composed of:

- 1. A metallic cation
- 2. <u>Ligands</u> Lewis bases that have a lone electron pair that can form a covalent bond with an empty orbital belonging to the metallic cation

NH_3 , CN^- , and H_2O are Common Ligands

Coordination Number

- ☐ Coordination number refers to the number of ligands attached to the cation
- □ 2, 4, and 6 are the most common coordination numbers

Coordination number	Example(s)
2	$Ag(NH_3)_2^+$
4	$CoCl_4^{2-}$ $Cu(NH_3)_4^{2+}$
6	$Co(H_2O)_6^{2+}$ Ni(NH ₃) ₆ ²⁺

Complex Ions and Solubility

$$AgCl(s) \leftrightarrows Ag^{+} + Cl^{-}$$
 $K_{sp} = 1.6 \times 10^{-10}$
 $Ag^{-} + NH_{3} \leftrightarrows Ag(NH_{3})^{+}$ $K_{1} = 2.1 \times 10^{3}$
 $Ag(NH_{3})^{+} NH_{3} \leftrightarrows Ag(NH_{3})_{2}^{+}$ $K_{2} = 8.2 \times 10^{3}$

$$AgCl + 2NH_3 \Rightarrow Ag(NH_3)_2^+ + Cl^- K = K_{sp} \cdot K_1 \cdot K_2$$

$$K = 2.8 \times 10^{-3} = \frac{[Ag(NH_3)_2^+][Cl^-]}{[NH_3]^2}$$