N36 – Acid Base

Quick Review

Link to YouTube Presentation: https://youtu.be/uS0P-Qp9tB8

N36 – Acid Base

Quick Review

Target: I can review Acid Base definitions and perform pH calculations for strong acids/bases

Acid/Base Definitions

Arrhenius Model	$\frac{\text{HNO}_3 \rightarrow \text{H}^+ + \text{NO}_3^-}{\text{KOH} \rightarrow \text{K}^+ + \text{OH}^-}$		
Bronsted-Lowry Model	$\mathbf{HCI} + \mathbf{NH}_3 \leftrightarrow \mathbf{CI}^{-} + \mathbf{NH}_4^{+}$		
Lewis Acid Model	$ \begin{array}{c} \mathbf{H} \\ \mathbf$		

Acid/Base Definitions

Arrhenius Model •Acids produce H+ •Bases produce OH ⁻	$\frac{\text{HNO}_3 \rightarrow \text{H}^+ + \text{NO}_3^-}{\text{KOH} \rightarrow \text{K}^+ + \text{OH}^-}$	
Bronsted-Lowry Model •Acids are proton donors •Bases are proton acceptors	$\mathbf{HCI} + \mathbf{NH}_3 \leftrightarrow \mathbf{CI}^{-} + \mathbf{NH}_4^{+}$	
Lewis Acid Model •Acids are electron pair acceptors •Bases are electron pair donors	$ \begin{array}{c} \mathbf{H} \\ \mathbf$	

Acid/Base Definitions

- Lewis Brønsted-Lowry :B Arrhenius H+--:OH
 - Arrhenius is MOST specific
 - Brønsted-Lowry is less specific
 - Lewis is LEAST specific

Problems with Arrhenius Theory

Does not explain why:

- Some molecular substances, (NH₃) dissolve in water to form basic solutions, even though they do not contain OH⁻ ions.
- How some ionic comp, (Na₂CO₃ or Na₂O) dissolve in water to form basic sol'ns, even though they don't contain OH⁻
- Why some molecular substances, (CO₂) dissolve in water to form acidic solutions, even though they do not contain H⁺ ions.
- Acid-base reactions that take place outside aqueous solution.

Brønsted–Lowry Acid–Base Theory

- It defines acids and bases based on what happens in a rxn.
- Any reaction involving H⁺ (proton) that transfers from one molecule to another is an acid—base reaction, regardless of whether it occurs in aqueous solution or if there is OH⁻ present.
- All reactions that fit the Arrhenius definition also fit the Brønsted–Lowry definition.

Brønsted–Lowry Theory

In a Brønsted–Lowry acid–base reaction, the acid molecule donates an H⁺ to the base molecule.

 $H-A + :B \leftrightarrow :A^- + H-B^+$

 $\mathsf{HCI} + \mathsf{NH}_3 \leftrightarrow \mathsf{CI}^{-} + \mathsf{NH}_4^{+}$

- The acid is an H⁺ donor.
- The **base** is an H⁺ acceptor.
 - Base structure must contain an atom with an unshared pair of electrons.

Brønsted–Lowry Acids

- H⁺ donors.
 - Any material that has H can potentially be a Brønsted–Lowry acid.
 - Because of the molecular structure, often one H in the molecule is easier to transfer than others.
- When HCI dissolves in water, the HCI is the acid because HCI transfers an H⁺ to H₂O, forming H₃O⁺ ions.

– Water acts as base, accepting H⁺.

$\begin{array}{ll} \mathsf{HCl}(aq) + \mathsf{H}_2\mathsf{O}(I) \to \mathsf{Cl}^-(aq) + \mathsf{H}_3\mathsf{O}^+(aq) \\ \texttt{Acid} & \texttt{Base} \end{array}$

Amphoteric Substances

Amphoteric substances can act as either an acid or a base because they have both a transferable H and an atom with lone pair electrons.

 $NH_3 + H(OH) \rightarrow NH_4^+ + OH^-$ Water is donating a proton...ACID!

HCI + H(OH) \rightarrow H₃O⁺ + CI⁻ Water is accepting a proton...BASE!

Conjugate Acid–Base Pairs

Acids turn into "Conjugate Bases" once they have lost their proton/hydrogen

Bases turn into "Conjugate Acids" once they have gained a proton/hydrogen

Conjugate Pairs

Tips for Finding Each

- Find the Acid First usually easiest!
- Find It's Conjugate Base the part left after donating its H+!
- Repeat with Base and Conjugate Acid

Acid Dissociation

Back to equilibrium!!!! Woohoo!

Can also H⁺ be written in its hydrated form, H₃O⁺ (hydronium ion)

Dissociation of Strong Acids

Strong acids are assumed to dissociate completely in solution.

Reactant favored or product favored?

Product Favored

Large K_a or small K_a ?

Large K_a

Dissociation Constants: Strong Acids

Acid	Formula	Conjugate Base	K _a
Perchloric	HCIO ₄	CIO ₄ -	Very large
Hydriodic	HI	l-	Very large
Hydrobromic	HBr	Br⁻	Very large
Hydrochloric	HCI	Cl-	Very large
Nitric	HNO ₃	NO ₃ -	Very large
Sulfuric	H_2SO_4	HSO ₄ -	Very large
Hydronium ion	H ₃ O+	H ₂ O	1.0

Dissociation of Weak Acids

Weak acids are assumed to dissociate only slightly (less than 5%) in solution.

Dissociation Constants: Weak Acids

Acid	Formula	Conjugate Base	K _a
Iodic	HIO ₃	10 ₃ -	1.7 x 10 ⁻¹
Oxalic	$H_2C_2O_4$	$HC_2O_4^-$	5.9 x 10 ⁻²
Sulfurous	H ₂ SO ₃	HSO ₃ -	1.5 x 10 ⁻²
Phosphoric	H ₃ PO ₄	H ₂ PO ₄ -	7.5 x 10 ⁻³
Citric	$H_3C_6H_5O_7$	$H_2C_6H_5O_7^{-1}$	7.1 x 10 ⁻⁴
Nitrous	HNO ₂	NO ₂ -	4.6 x 10 ⁻⁴
Hydrofluoric	HF	F ⁻	3.5 x 10 ⁻⁴
Formic	НСООН	HCOO-	1.8 x 10 ⁻⁴
Benzoic	C ₆ H ₅ COOH	C ₆ H ₅ COO ⁻	6.5 x 10 ⁻⁵
Acetic	CH ₃ COOH	CH ₃ COO ⁻	1.8 x 10 ⁻⁵
Carbonic	H ₂ CO ₃	HCO ₃ -	4.3 x 10 ⁻⁷
Hypochlorous	HCIO	CIO	3.0 x 10 ⁻⁸
Hydrocyanic	HCN	CN ⁻	4.9 x 10 ⁻¹⁰

Random fact

Weak acids will dissociate more when they are dilute! The lower the concentration the higher % dissociation they will have.

$$K_w$$
 is a constant at 25 °C:
 $K_w = [H_3O^+][OH^-]$ At 25°, $[H_3O^+] = [OH^-] = 1 \times 10^{-7}$
 $K_w = (1 \times 10^{-7})(1 \times 10^{-7}) = 1 \times 10^{-14}$

$H_{2}O_{(1)} + H_{2}O_{(1)} \longrightarrow OH_{(aq)}^{-} + H_{3}O_{(aq)}^{+}$ *K_w* is a constant at 25 °C:

Self-Ionization of Water

Self-Ionization of Water

- *K_w* is only 1 x 10⁻¹⁴ when at 25 °C
- Neutral is only pH 7 when at 25 °C
- K_w increases as temp increases more dissociates!
- pH of neutral gets lower as temp increases

pH and pOH Calculations

pH and pOH Calculations

pH and pOH Calculations

pH Scale

Courtesy of Environment Canada (http://www.ns.ec.dc.caA

pH Indicators

Some substances turn colors when the pH changes into a certain range, because their structure is changing. This is a very handy tool for us!

Example:

Phenolphthalein turns from clear to pink when the pH reaches ~ 8 - 10.

pH Indicators

You can predict the effective color change region of an indicator by looking at it's pKa.

Color Change Region = +/- 1 pH unit from the indicator's pKa.

The pKa of phenolphthalein is 9.3, therefore it will change colors between a pH of ~ 8 - 10

YouTube Link to Presentation

https://youtu.be/uS0P-Qp9tB8