N38 – Acid Base

Salts

Link to YouTube Presentation: https://youtu.be/k28s1ynGZhM

N38 – Acid Base Salts

Target: I can determine if a salt will make a solution acidic, basic, and can calculate the pH of a salt solution.

You HAVE to have your strong acids and bases <u>memorized!</u>

An ionic compound formed when an acid and a base react with each other

NaOH + HCI \rightarrow H₂O + NaCl NH₄OH + HCI \rightarrow H₂O + NH₄Cl

How do salts behave when you put them in water?

They dissociate – the ions separate

NaCl \rightarrow Na⁺ + Cl⁻ NH₄Cl \rightarrow NH₄⁺ + Cl⁻

How do the ions behave once they have dissociated?

The ions can sometimes "hydrolyze" Meaning they can react with the water. $NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$

The ion has to be "strong" enough for this to happen (we will explain which ions are strong in a minute!)

What is the result of This (potential) hydrolysis?

Once the ion hydrolyzes with the water it can make the salt solution acidic, basic, or neutral

 $NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$ $CO_3^{2-} + H_2O \rightarrow HCO_3^{-} + OH^ CI^- + H_2O \rightarrow CI^- + H_2O$

solution is ACIDIC solution is BASIC CI- is not strong enough to hydrolyze so solution is NEUTRAL

How do you know if it is "strong" enough to hydrolyze?

Have to think about the properties of the acids/bases that the ion came from

	Turns into a…	Hydrolyzes?
Strong Acid	Weaker conjugate base	No
Weak Acid	Stronger conjugate base	Yes
Strong Base	Weaker conjugate acid	No
Weak Base	Stronger conjugate acid	Yes

Why does strong turn into weak and vice versa?

Think about where equilibrium lies for the original acid/base... $HCI \leftrightarrow H^+ + CI^-$

- Strong acid, most dissociates so eq. lies to the right.
- It "wants" to be broken into its ions.
- So if it wants to be broken into H⁺ and Cl⁻ ...
 - Is the CI⁻ going to be able to go around taking H⁺ off water to form HCI???

No!

1. Identify acid or base that the salt ions came from

- **2.** Determine if the ions will hydrolyze
 - Figure out if they came from a strong or weak acid/base
 - From strong \rightarrow ion won't hydrolyze neutral contribution
 - From weak \rightarrow ion will hydrolyze acidic or basic contribution

3. If it hydrolyzes identify if the hydrolysis of the ion would form acid or base.

	Turns into a…	Hydrolyzes?	lon makes sol'n
Strong Acid	Weaker conjugate base	No	Neutral
Weak Acid	Stronger conjugate base	Yes	Basic
Strong Base	Weaker conjugate acid	No	Neutral
Weak Base	Stronger conjugate acid	Yes	Acidic

4. Figure out what the combo of each ion's contribution would be to the solution

	Makes the solution
Acidic + Neutral	Acidic
Basic + Neutral	Basic
Neutral + Neutral	Neutral
Acidic + Basic	Compare Ka and Kb to determine which "wins"

- **5.** To determine the "winner" when acidic + basic
 - Compare the Ka and Kb values
 - The higher one means it is stronger, more dissociation so it will contribute more to the resulting solution

Ka _(ion) > Kb _(ion)	Acidic
Ka _(ion) < Kb _(ion)	Basic
$Ka_{(ion)} = Kb_{(ion)}$	Neutral

The problem...

You rarely have Ka and Kb for the CONJUGATE IONS you are interested in. You usually only have them for the STARTING acid/base they came from. Ugh...

<u>Finding K_{A(ION)} AND K_{b(ion)}</u> Kw = Ka x Kb

If you want Ka of an ion \rightarrow need Kb of the base it came from If you want Kb of an ion \rightarrow need Ka of the acid it came from

Practice Problem:What is the Ka of NH_4^+ ?Use Kb of NH_3 (1.8 x 10⁻⁵)plug in and solve for $Ka_{(ion)}$ $(1 \times 10^{-14}) = Ka_{(ion)} \times (1.8 \times 10^{-5})$ $Ka_{(ion)} NH_4^+ = 5.56 \times 10^{-10}$

Is KBr an acidic, basic, or neutral salt?

- K^+ → KOH Strong Base $\xrightarrow{K^+ Br_-} Br^-$ → F^- → so K^+ is Weaker acid → so → No Hydrolysis → N
 - \rightarrow Neutral effect

Br → HBr Strong Acid → so Br is Weaker base → No Hydrolysis → Neutral effect

	Turns into a…	Hydrolyzes?	lon makes sol'n
Strong Acid	Weaker conjugate base	No	Neutral
Weak Acid	Stronger conjugate base	Yes	Basic
Strong Base	Weaker conjugate acid	No	Neutral
Weak Base	Stronger conjugate acid	Yes	Acidic

Is KBr an acidic, basic, or neutral salt?

- K⁺ Br-
- $K^+ \rightarrow KOH$ Strong Base \rightarrow so K^+ is Weaker acid \rightarrow No Hydrolysis \rightarrow Neutral effect

 $Br \rightarrow HBr$ Strong Acid \rightarrow so Br is Weaker base \rightarrow No Hydrolysis

 \rightarrow Neutral effect

So KBr is a

NEUTRAL

SALT!

	Makes the solution
Acidic + Neutral	Acidic
Basic + Neutral	Basic
Neutral + Neutral	Neutral
Acidic + Basic	Compare Ka and Kb to determine which "wins"

Is $KHCO_3$ an acidic, basic, or neutral salt? K⁺ HCO_3^-

 $K^+ \rightarrow KOH$ Strong Base \rightarrow so K^+ is Weaker acid \rightarrow No Hydrolysis \rightarrow Neutral effect

 $HCO_3^- \rightarrow H_2CO_3$ Weak Acid \rightarrow so HCO_3^- is Stronger Base \rightarrow Hydrolysis \rightarrow Basic effect

	Turns into a…	Hydrolyzes?	lon makes sol'n
Strong Acid	Weaker conjugate base	No	Neutral
Weak Acid	Stronger conjugate base	Yes	Basic
Strong Base	Weaker conjugate acid	No	Neutral
Weak Base	Stronger conjugate acid	Yes	Acidic

Is $KHCO_3$ an acidic, basic, or neutral salt? K⁺ HCO_3^-

 $K^+ \rightarrow KOH$ Strong Base \rightarrow so K^+ is Weaker acid \rightarrow No Hydrolysis \rightarrow Neutral effect

 $HCO_3^- \rightarrow H_2CO_3$ Weak Acid \rightarrow so HCO_3^- is Stronger Base \rightarrow Hydrolysis

0 2	Makes the solution	-	→ Basic effect
Acidic + Neutral	Acidic		
Basic + Neutral	Basic		So KHCO ₃
Neutral + Neutral	Neutral		is a BASIC
Acidic + Basic	Compare Ka and Kb to determine which "wins"		SALT!

Is NH_4Br an acidic, basic, or neutral salt? NH_4^+ Br⁻

 $NH_4^+ \rightarrow NH_3$ Weak Base \rightarrow so NH_4^+ is Stronger acid \rightarrow Hydrolysis \rightarrow Acidic effect

Br→HBr Strong Acid→ so Br⁻ is Weaker Base→ No Hydrolysis → Neutral effect

	Turns into a	Hydrolyzes?	lon makes sol'n
Strong Acid	Weaker conjugate base	No	Neutral
Weak Acid	Stronger conjugate base	Yes	Basic
Strong Base	Weaker conjugate acid	No	Neutral
Weak Base	Stronger conjugate acid	Yes	Acidic

Is NH_4Br an acidic, basic, or neutral salt? NH_4^+ Br⁻

 $NH_4^+ \rightarrow NH_3$ Weak Base \rightarrow so NH_4^+ is Stronger acid \rightarrow Hydrolysis \rightarrow Acidic effect

 $Br \rightarrow HBr$ Strong Acid \rightarrow so Br is Weaker Base \rightarrow No Hydrolysis

	Makes the solution	→ Neutral effect
Acidic + Neutral	Acidic	So NH₄Br
Basic + Neutral	Basic	is an
Neutral + Neutral	Neutral	
Acidic + Basic	Compare Ka and Kb to determine which "wins"	ACIDIC SALT!

Is NH_4CN an acidic, basic, or neutral salt? NH_4^+ CN^-

 $NH_4^+ \rightarrow NH_3$ Weak Base \rightarrow so NH_4^+ is Stronger acid \rightarrow Hydrolysis \rightarrow Acidic effect

 $CN^{-} \rightarrow HCN$ Weak Acid \rightarrow so CN^{-} is Stronger Base \rightarrow Hydrolysis \rightarrow **Basic effect**

	Turns into a…	Hydrolyzes?	lon makes sol'n
Strong Acid	Weaker conjugate base	No	Neutral
Weak Acid	Stronger conjugate base	Yes	Basic
Strong Base	Weaker conjugate acid	No	Neutral
Weak Base	Stronger conjugate acid	Yes	Acidic

Is NH₄CN an acidic, basic, or neutral salt?

 $NH_4^+ \rightarrow NH_3$ Weak Base \rightarrow so NH_4^+ is Stronger acid \rightarrow Hydrolysis \rightarrow Acidic effect

 $CN^{-} \rightarrow HCN$ Weak Acid \rightarrow so CN^{-} is Stronger Base \rightarrow Hydrolysis \rightarrow **Basic effect**

Kb NH₃ = $1.8 \times 10^{-5} \longrightarrow Ka NH_4^+ = (1.0 \times 10^{-14})/(1.8 \times 10^{-5})$ Ka HCN = $4.9 \times 10^{-10} \longrightarrow Kb CN^- = (1.0 \times 10^{-14})/(4.9 \times 10^{-10})$

Ka $_{(NH4+)}$ = 5.56 x 10⁻¹⁰ Kb $_{(CN-)}$ = 2.04 x 10⁻⁵ $Ka_{(NH4+)} < Kb_{(CN-)}$

NH₄CN is a Basic Salt!

Calculating the actual pH of salts

What if you want the actual pH value?

- Do all the steps needed to determine which ion is the "strong" one – which one is being hydrolyzed?
- 2. Write the hydrolysis reaction for that ion (or ions)
- 3. ICE Table time! Yes! More ICE tables! They just won't go away! ☺ Use your hydrolysis rxn for ICE Table
- **4.** Find $[H_3O^+]$ or $[OH^-]$ from ICE Tables
- 5. Continue on with normal pH type calculations

What is the pH of a 0.25M NH_4NO_3 salt solution? $NH_4^+ NO_3^-$

 $NH_4^+ \rightarrow NH_3$ Weak Base \rightarrow so NH_4^+ is Stronger acid \rightarrow Hydrolysis \rightarrow Acidic effect

 $NO_3^- \rightarrow HNO_3$ Strong Acid \rightarrow so NO_3^- is Weaker Base \rightarrow No Hydrolysis

	Makes the solution	→ Neutral effect
Acidic + Neutral	Acidic	$\mathbf{So} \mathbf{NH}_4 \mathbf{NO}_3$
Basic + Neutral	Basic	is an
Neutral + Neutral	Neutral	
Acidic + Basic	Compare Ka and Kb to determine which "wins"	ACIDIC SALT!

What is the pH of a 0.25M NH_4NO_3 salt solution? NH_4^+ is the ion contributing an acidic effect

 $\frac{\text{Hydrolysis}}{\text{NH}_4^+ + \text{H}_2\text{O} \rightarrow \text{NH}_3 + \text{H}_3\text{O}^+}$

We don't have Ka NH_4^+ BUT....we do have... Kb (NH_3) = 1.8 x 10⁻⁵ And remember... **Kw = Ka x Kb**

We know the Kb for our conjugate (NH_3), so we just solve for the Ka of the ion we are interested in!

What is the pH of a 0.25M NH₄NO₃ salt solution? <u>Hydrolysis</u> $NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$

Ka $(NH_4^+) = (1.0 \times 10^{-14})/(1.8 \times 10^{-5}) = 5.56 \times 10^{-10}$

Time for an ICE Table!

What is the pH of a 0.25M NH₄NO₃ salt solution?

<u>Hydrolysis</u>

 $NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$

	NH ₄ +	+ H_2O	$\rightarrow NH_3$	+ H ₃ O ⁺
	0.25		0	0
С	- X		+ X	+ X
E	0.25 – x		X	X
5%	0.25		X	X
Ans.				

What is the pH of a 0.25M NH₄NO₃ salt solution?

	NH ₄ +	+ H ₂ O	$\rightarrow NH_3$	+ H ₂ O ⁺	$[NH][HO^+]$
Ι	0.25		0	0	$Ka = \frac{[NH_3][H_3O^+]}{[NH_4^+]}$
С	- x		+ X	+ X	
E	0.25 – x		x	X	$5.56 \times 10 - 10 = \frac{(x)(x)}{(0.25)}$
5%	0.25		x	X	(0.25)
Ans.	0.25		1.18 x 10^{-5}	1.18 x 10 ⁻⁵	$x = 1.18 \ x \ 10^{-5}$

Time for pH calculation!

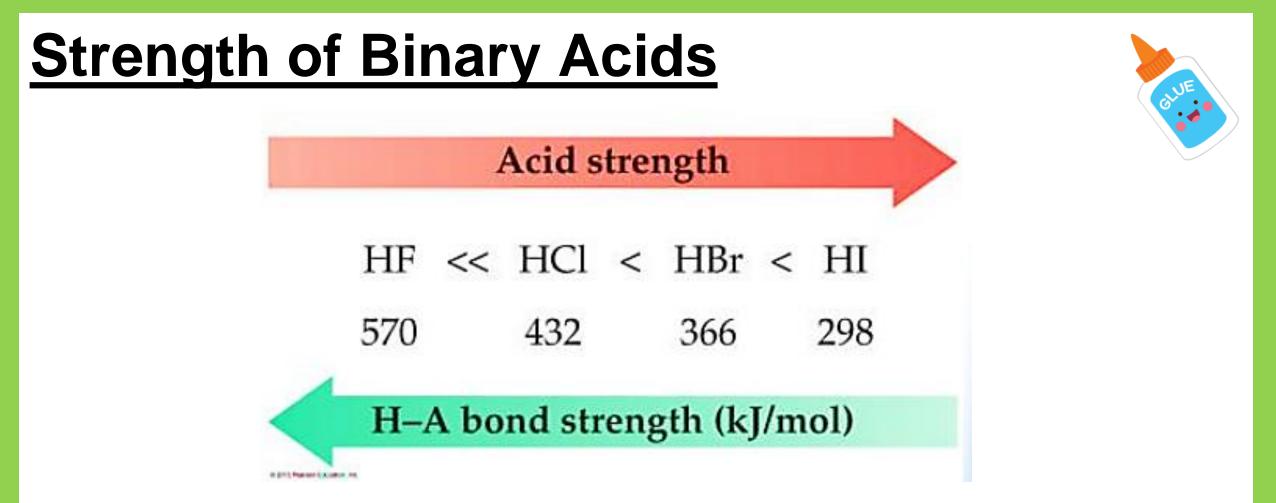
What is the pH of a 0.25M NH₄NO₃ salt solution?

$$[H_3 O^+] = 1.18 \ x \ 10^{-5}$$

$$pH = -\log(1.18 \ x \ 10^{-5})$$

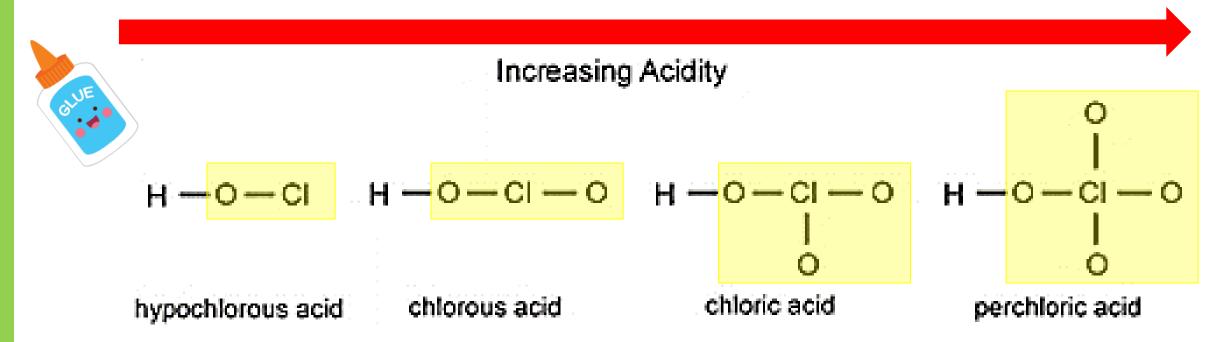
pH = 4.93

Finally finished!


A few last things to keep in mind...

Highly Charged Metals

Type of Salt	Examples	Comment	pH of solution
Cation is a highly charged metal ion; Anion is from strong acid	AI(NO ₃) ₃ FeCl ₃	Hydrated cation acts as an acid; Anion is neutral	Acidic


<u>Step #1:</u>

 $\begin{array}{rll} \overline{AICI_3(s)} + 6H_2O \rightarrow AI(H_2O)_6^{3+}(aq) + CI^{-}(aq) \\ Salt & water & Complex ion & anion \end{array}$

Small radius, and high electronegativity of F pulling on the e- of H, results in a shorter/stronger bond between H and the other element. Reduces acidity because H cannot dissociate as easily.

Strength of Oxyacids (and other similar)

High electronegativity of the <u>side group</u> pulls electron density AWAY from the bond involving Hydrogen. Bond is therefore weakened so it breaks more easily, therefore more acidic.

YouTube Link to Presentation

https://youtu.be/k28s1ynGZhM