| Name: | Per: | Seat: | | | |----------------------------------|------|-------|-----------|--| | Dougherty Valley HS AP Chemistry | | | WORKSHEET | | | Acid-Base Reactions | | | #10 | | | CALCULATIONS | | | #10 | | | | | | 7 | | ## Information from the Curve: There are several things you can read from the titration curve itself. Consider this titration curve. - This is a ______ (strong/weak) acid titrated with a strong base. The acid is ______ (monoprotic/diprotic). How would the other strength of acid look? - Place a dot (•) on the curve at the equivalence point. The pH at the equivalence point is _____. Choose a good indicator for this titration from Figure 17.11 on page 810 of your textbook. - 3. What volume of base was used to titrate the acid solution? _____ mL - 4. Place a box (■) on the curve where the pH of the solution = the pKa of the acid. What is the pH at this point? _____ What is the pKa of the acid? _____ What is the Ka of the acid? _____ ## **Calculations knowing the Acid:** - 5. Hydrofluoric acid, HF, has a $K_a = 7.2 \times 10^{-4}$. Calculate the pH of 10.0 mL of a 0.050 M solution of HF. Plot this point on the axes. (2.2) - 6. A 0.020 M solution of NaOH is used for the titration. What volume will be needed to reach the equivalence point? (25ml) - 7. Write the net reaction for the neutralization of a solution of HF with a solution of NaOH. - 8. Calculate the moles of F at the equivalence point. (0.0005 mol) What is the total volume? _____ L (0.035L) The [F] at the equivalence point is _____ (0.0143M) - 9. Calculate the pH of the solution at the equivalence point. Use this information and the answer to question 6 to plt the equivalence point on your graph. Choose a good indicator for this titration from Figure 17.11 on page 810 of your textbook. (7.65) - 10. What is the pH halfway to the equivalence point? Plot this point on your graph. (3.14) - 11. How many moles of HF are in the original 10.0 mL sample of HF? _____ (0.0005 mol) - 12. When only 5.0 mL of 0.020 M NaOH has been added, calculate the moles of HF left and F⁻ produced. | | HF | OH ⁻ | H ₂ O | \mathbf{F}^{-} | |---|----|-----------------|------------------|------------------| | i | | | | | | c | | | | | | e | | | | | - Use the Henderson-Hesselbach equation or an icebox to calculate the pH when 5.0 mL of base has been added. Plot this point on your graph. (2.53) - 14. When 20.0 mL of 0.020 M NaOH has been added, calculate the moles of HF left and F produced. | 100 | 10ddccd. | | | | | | | |-----|----------|--------|--------|------------------|--|--|--| | | HF | OH^- | H_2O | \mathbf{F}^{-} | | | | | i | | | | | | | | | c | | | | | | | | | e | | | | | | | | - 15. Use the Henderson-Hesselbach equation or an icebox to calculate the pH when 20.0 mL of base has been added. Plot this point on your graph. (3.75) - 16. When 30.0 mL of base is added, how many moles of OH⁻ is in excess? ______ (1E⁻⁴) The total volume is _____ L. (0.04L) [OH⁻] = _____ (0.0025M) pOH = _____ (2.6) pH = _____ (11.4) Plot this point on your graph. 17. Sketch the titration curve on your graph. ## **Weak Base-Strong Acid Curve:** A 20.0 mL sample of 0.10 \underline{M} CH₃NH₂ (methyl amine) is titrated with 0.15 \underline{M} HCl. The K_b for CH₃NH₂ = 4.2 x 10⁻⁴. Do the appropriate calculations to sketch a titration curve for this titration. Formulas from the AP Exam: ## **EQUILIBRIUM** $$K_{a} = \frac{[\mathrm{H}^{+}][\mathrm{A}^{-}]}{[\mathrm{HA}]}$$ $$K_{b} = \frac{[\mathrm{OH}^{-}][\mathrm{HB}^{+}]}{[\mathrm{B}]}$$ $$K_{w} = [\mathrm{OH}^{-}][\mathrm{H}^{+}] = 1.0 \times 10^{-14} @ 25^{\circ}\mathrm{C}$$ $$= K_{a} \times K_{b}$$ $$\mathrm{pH} = -\log[\mathrm{H}^{+}], \ \mathrm{pOH} = -\log[\mathrm{OH}^{-}]$$ $$14 = \mathrm{pH} + \mathrm{pOH}$$ $$\mathrm{pH} = \mathrm{p}K_{a} + \log\frac{[\mathrm{A}^{-}]}{[\mathrm{HA}]}$$ $$\mathrm{pOH} = \mathrm{p}K_{b} + \log\frac{[\mathrm{HB}^{+}]}{[\mathrm{B}]}$$ $$\mathrm{p}K_{a} = -\log K_{a}, \ \mathrm{p}K_{b} = -\log K_{b}$$ $$K_{p} = K_{c}(RT)^{\Delta n},$$ where Δn = moles product gas – moles reactant gas