WORKSHEET #12

Name:

Period:

Seat #: ___

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

- In aqueous solution, ammonia reacts as represented above. In 0.0180 M NH₃(aq) at 25°C, the hydroxide ion concentration, [OH⁻], is 5.60 × 10⁻⁴ M. In answering the following, assume that temperature is constant at 25°C and that volumes are additive.
 - (a) Write the equilibrium-constant expression for the reaction represented above.
 - (b) Determine the pH of 0.0180 M NH₃(aq).
 - (c) Determine the value of the base ionization constant, K_b , for $NH_3(aq)$.
 - (d) Determine the percent ionization of NH_3 in 0.0180 M $NH_3(aq)$.
 - (e) In an experiment, a 20.0 mL sample of 0.0180 M NH₃(aq) was placed in a flask and titrated to the equivalence point and beyond using 0.0120 M HCl(aq).
 - (i) Determine the volume of 0.0120 M HCl(aq) that was added to reach the equivalence point.
 - (ii) Determine the pH of the solution in the flask after a total of 15.0 mL of $0.0120 \, M$ HCl(aq) was added.
 - (iii) Determine the pH of the solution in the flask after a total of 40.0 mL of 0.0120 M HCl(aq) was added.

2000

- A volume of 30.0 mL of 0.10 M NH₃(aq) is titrated with 0.20 M HCl(aq). The value of the base-dissociation constant, K_b, for NH₃ in water is 1.8 × 10⁻⁵ at 25°C.
 - (a) Write the net-ionic equation for the reaction of $NH_3(aq)$ with HCl(aq).
 - (b) Using the axes provided below, sketch the titration curve that results when a total of 40.0 mL of 0.20 M HCl(aq) is added dropwise to the 30.0 mL volume of 0.10 M NH₃(aq).

(c) From the table below, select the most appropriate indicator for the titration. Justify your choice.

Indicator	pK _a
Methyl Red	5.5
Bromothymol Blue	7.1
Phenolphthalein	8.7

(d) If equal volumes of 0.10 M NH₃(aq) and 0.10 M NH₄Cl(aq) are mixed, is the resulting solution acidic, neutral, or basic? Explain.

2002

$$HOBr(aq) \rightleftharpoons H^+(aq) + OBr^-(aq)$$

$$K_a = 2.3 \times 10^{-9}$$

- 1. Hypobromous acid, HOBr, is a weak acid that dissociates in water, as represented by the equation above.
 - (a) Calculate the value of [H⁺] in an HOBr solution that has a pH of 4.95.
 - (b) Write the equilibrium constant expression for the ionization of HOBr in water, then calculate the concentration of HOBr(aq) in an HOBr solution that has [H⁺] equal to $1.8 \times 10^{-5} M$.
 - (c) A solution of Ba(OH)₂ is titrated into a solution of HOBr.
 - Calculate the volume of 0.115 M Ba(OH)₂(aq) needed to reach the equivalence point when titrated into a 65.0 mL sample of 0.146 M HOBr(aq).
 - (ii) Indicate whether the pH at the equivalence point is less than 7, equal to 7, or greater than 7. Explain.
 - (d) Calculate the number of moles of NaOBr(s) that would have to be added to 125 mL of 0.160 M HOBr to produce a buffer solution with $[H^+] = 5.00 \times 10^{-9} M$. Assume that volume change is negligible.
 - (e) HOBr is a weaker acid than HBrO3. Account for this fact in terms of molecular structure.

$$C_6H_5NH_2(aq) + H_2O(l) \rightleftharpoons C_6H_5NH_3^+(aq) + OH^-(aq)$$

- 1. Aniline, a weak base, reacts with water according to the reaction represented above.
 - (a) Write the equilibrium constant expression, K_h , for the reaction represented above.
 - (b) A sample of aniline is dissolved in water to produce 25.0 mL of a 0.10 M solution. The pH of the solution is 8.82. Calculate the equilibrium constant, K_b , for this reaction.
 - (c) The solution prepared in part (b) is titrated with 0.10 M HCl. Calculate the pH of the solution when 5.0 mL of the acid has been added.
 - (d) Calculate the pH at the equivalence point of the titration in part (c).
 - (e) The pK_a values for several indicators are given below. Which of the indicators listed is most suitable for this titration? Justify your answer.

Indicator	pK _a
Erythrosine	3
Litmus	7
Thymolphthalein	10

2005

$$\text{HC}_3\text{H}_5\text{O}_2(aq) \rightleftarrows \text{C}_3\text{H}_5\text{O}_2^-(aq) + \text{H}^+(aq)$$
 $K_a = 1.34 \times 10^{-5}$

- 1. Propanoic acid, HC₃H₅O₂, ionizes in water according to the equation above.
 - (a) Write the equilibrium-constant expression for the reaction.
 - (b) Calculate the pH of a 0.265 M solution of propanoic acid.
 - (c) A 0.496 g sample of sodium propanoate, NaC₃H₅O₂, is added to a 50.0 mL sample of a 0.265 M solution of propanoic acid. Assuming that no change in the volume of the solution occurs, calculate each of the following.
 - (i) The concentration of the propanoate ion, $C_3H_5O_2^-(aq)$, in the solution
 - (ii) The concentration of the H⁺(aq) ion in the solution

The methanoate ion, $HCO_2^-(aq)$, reacts with water to form methanoic acid and hydroxide ion, as shown in the following equation.

$$HCO_2^-(aq) + H_2O(l) \rightleftharpoons HCO_2H(aq) + OH^-(aq)$$

- (d) Given that [OH⁻] is 4.18 × 10⁻⁶ M in a 0.309 M solution of sodium methanoate, calculate each of the following.
 - (i) The value of K_b for the methanoate ion, $HCO_2^{-}(aq)$
 - (ii) The value of K_a for methanoic acid, HCO₂H
- (e) Which acid is stronger, propanoic acid or methanoic acid? Justify your answer.

2005B

$$K_a = \frac{[\text{H}_3\text{O}^+][\text{OCl}^-]}{[\text{HOCl}]} = 3.2 \times 10^{-8}$$

- 1. Hypochlorous acid, HOCl, is a weak acid in water. The K_a expression for HOCl is shown above.
 - (a) Write a chemical equation showing how HOCl behaves as an acid in water.
 - (b) Calculate the pH of a 0.175 M solution of HOCl.
 - (c) Write the net ionic equation for the reaction between the weak acid HOCl(aq) and the strong base NaOH(aq).
 - (d) In an experiment, 20.00 mL of 0.175 M HOCl(aq) is placed in a flask and titrated with 6.55 mL of 0.435 M NaOH(aq).
 - (i) Calculate the number of moles of NaOH(aq) added.
 - (ii) Calculate [H₃O⁺] in the flask after the NaOH(aq) has been added.
 - (iii) Calculate [OH⁻] in the flask after the NaOH(aq) has been added.

- 2006B 1. Benzoic acid, C₆H₅COOH, dissociates in water as shown in the equation above. A 25.0 mL sample of an aqueous solution of pure benzoic acid is titrated using standardized 0.150 M NaOH.
 - (a) After addition of 15.0 mL of the 0.150 M NaOH, the pH of the resulting solution is 4.37. Calculate each of the following.
 - (i) [H⁺] in the solution
 - (ii) [OH-] in the solution
 - (iii) The number of moles of NaOH added
 - (iv) The number of moles of $C_6H_5COO^-(aq)$ in the solution
 - (v) The number of moles of C₆H₅COOH in the solution
 - (b) State whether the solution at the equivalence point of the titration is acidic, basic, or neutral. Explain your reasoning.

In a different titration, a 0.7529 g sample of a mixture of solid C₆H₅COOH and solid NaCl is dissolved in water and titrated with 0.150 M NaOH. The equivalence point is reached when 24.78 mL of the base solution is added.

- (c) Calculate each of the following.
 - (i) The mass, in grams, of benzoic acid in the solid sample
 - (ii) The mass percentage of benzoic acid in the solid sample

2007

$$HF(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + F^-(aq)$$
 $K_a = 7.2 \times 10^{-4}$

- 1. Hydrofluoric acid, HF(aq), dissociates in water as represented by the equation above.
 - (a) Write the equilibrium-constant expression for the dissociation of HF(aq) in water.
 - (b) Calculate the molar concentration of H_3O^+ in a 0.40 M HF(aq) solution.

HF(aq) reacts with NaOH(aq) according to the reaction represented below.

$$HF(aq) + OH^{-}(aq) \rightarrow H_2O(l) + F^{-}(aq)$$

A volume of 15 mL of 0.40 M NaOH(aq) is added to 25 mL of 0.40 M HF(aq) solution. Assume that volumes are additive.

- (c) Calculate the number of moles of HF(aq) remaining in the solution.
- (d) Calculate the molar concentration of $F^{-}(aq)$ in the solution.
- (e) Calculate the pH of the solution.

2002B #1

$$HC_3H_5O_3(aq) \rightleftharpoons H^+(aq) + C_3H_5O_3^-(aq)$$

- Lactic acid, HC₃H₅O₃, is a monoprotic acid that dissociates in aqueous solution, as represented by the equation above. Lactic acid is 1.66 percent dissociated in 0.50 M HC₃H₅O₃(aq) at 298 K. For parts (a) through (d) below, assume the temperature remains at 298 K.
 - (a) Write the expression for the acid-dissociation constant, K_a , for lactic acid and calculate its value.
 - (b) Calculate the pH of $0.50 M HC_3H_5O_3$.
 - (c) Calculate the pH of a solution formed by dissolving 0.045 mole of solid sodium lactate, NaC₃H₅O₃, in 250. mL of 0.50 M HC₃H₅O₃. Assume that volume change is negligible.
 - (d) A 100. mL sample of 0.10 M HCl is added to 100. mL of 0.50 M HC₃H₅O₃. Calculate the molar concentration of lactate ion, C₃H₅O₃⁻, in the resulting solution.

- 3. Answer the following questions about acetylsalicylic acid, the active ingredient in aspirin.
 - (a) The amount of acetylsalicylic acid in a single aspirin tablet is 325 mg, yet the tablet has a mass of 2.00 g. Calculate the mass percent of acetylsalicylic acid in the tablet.
 - (b) The elements contained in acetylsalicylic acid are hydrogen, carbon, and oxygen. The combustion of 3.000 g of the pure compound yields 1.200 g of water and 3.72 L of dry carbon dioxide, measured at 750. mm Hg and 25°C. Calculate the mass, in g, of each element in the 3.000 g sample.
 - (c) A student dissolved 1.625 g of pure acetylsalicylic acid in distilled water and titrated the resulting solution to the equivalence point using 88.43 mL of 0.102 M NaOH(aq). Assuming that acetylsalicylic acid has only one ionizable hydrogen, calculate the molar mass of the acid.
 - (d) A 2.00 × 10⁻³ mole sample of pure acetylsalicylic acid was dissolved in 15.00 mL of water and then titrated with 0.100 M NaOH(aq). The equivalence point was reached after 20.00 mL of the NaOH solution had been added. Using the data from the titration, shown in the table below, determine
 - (i) the value of the acid dissociation constant, K_a , for acetylsalicylic acid and
 - (ii) the pH of the solution after a total volume of 25.00 mL of the NaOH solution had been added (assume that volumes are additive).

Volume of 0.100 M NaOH Added (mL)	pН
0.00	2.22
5.00	2.97
10.00	3.44
15.00	3.92
20.00	8.13
25.00	?

2002B #8
8. The graph below shows the result of the titration of a 25 mL sample of a 0.10 M solution of a weak acid, HA,

- (a) Describe two features of the graph above that identify HA as a weak acid.
- (b) Describe one method by which the value of the acid-dissociation constant for HA can be determined using the graph above.
- (c) On the graph above, sketch the titration curve that would result if 25 mL of 0.10 M HCl were used instead of 0.10 M HA.
- (d) A 25 mL sample of 0.10 M HA is titrated with 0.20 M NaOH.
 - (i) What volume of base must be added to reach the equivalence point?
 - (ii) The pH at the equivalence point for this titration is slightly higher than the pH at the equivalence point in the titration using 0.10 M NaOH. Explain.

2003B

- 2. Answer the following questions that relate to chemical reactions.
 - (a) Iron(III) oxide can be reduced with carbon monoxide according to the following equation.

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$

A 16.2 L sample of CO(g) at 1.50 atm and 200.°C is combined with 15.39 g of $Fe_2O_3(s)$.

- (i) How many moles of CO(g) are available for the reaction?
- (ii) What is the limiting reactant for the reaction? Justify your answer with calculations.
- (iii) How many moles of Fe(s) are formed in the reaction?
- (b) In a reaction vessel, 0.600 mol of $Ba(NO_3)_2(s)$ and 0.300 mol of $H_3PO_4(aq)$ are combined with deionized water to a final volume of 2.00 L. The reaction represented below occurs.

$$3 \text{ Ba(NO}_3)_2(aq) + 2 \text{ H}_3\text{PO}_4(aq) \rightarrow \text{Ba}_3(\text{PO}_4)_2(s) + 6 \text{ HNO}_3(aq)$$

- (i) Calculate the mass of $Ba_3(PO_4)_2(s)$ formed.
- (ii) Calculate the pH of the resulting solution.
- (iii) What is the concentration, in mol L^{-1} , of the nitrate ion, $NO_3^-(aq)$, after the reaction reaches completion?

2001

- 1. Answer the following questions relating to the solubility of the chlorides of silver and lead.
 - (a) At 10° C, 8.9×10^{-5} g of AgCl(s) will dissolve in 100. mL of water.
 - (i) Write the equation for the dissociation of AgCl(s) in water.
 - (ii) Calculate the solubility, in mol L^{-1} , of AgCl(s) in water at 10°C.
 - (iii) Calculate the value of the solubility-product constant, K_{sp} , for AgCl(s) at 10°C.
 - (b) At 25°C, the value of K_{sp} for PbCl₂(s) is 1.6×10^{-5} and the value of K_{sp} for AgCl(s) is 1.8×10^{-10} .
 - (i) If 60.0 mL of 0.0400 M NaCl(aq) is added to 60.0 mL of 0.0300 M Pb(NO₃)₂(aq), will a precipitate form? Assume that volumes are additive. Show calculations to support your answer.
 - (ii) Calculate the equilibrium value of $[Pb^{2+}(aq)]$ in 1.00 L of saturated $PbCl_2$ solution to which 0.250 mole of NaCl(s) has been added. Assume that no volume change occurs.
 - (iii) If 0.100 *M* NaCl(*aq*) is added slowly to a beaker containing both 0.120 *M* AgNO₃(*aq*) and 0.150 *M* Pb(NO₃)₂(*aq*) at 25°C, which will precipitate first, AgCl(*s*) or PbCl₂(*s*)? Show calculations to support your answer.

2004

1. Answer the following questions relating to the solubilities of two silver compounds, Ag₂CrO₄ and Ag₃PO₄.

Silver chromate dissociates in water according to the equation shown below.

$$Ag_2CrO_4(s) \rightleftharpoons 2 Ag^+(aq) + CrO_4^{2-}(aq)$$
 $K_{sp} = 2.6 \times 10^{-12} \text{ at } 25^{\circ}C$

- (a) Write the equilibrium-constant expression for the dissolving of $Ag_2CrO_4(s)$.
- (b) Calculate the concentration, in mol L^{-1} , of $Ag^{+}(aq)$ in a saturated solution of $Ag_{2}CrO_{4}$ at 25°C.
- (c) Calculate the maximum mass, in grams, of Ag₂CrO₄ that can dissolve in 100. mL of water at 25°C.
- (d) A 0.100 mol sample of solid AgNO₃ is added to a 1.00 L saturated solution of Ag₂CrO₄. Assuming no volume change, does [CrO₄²⁻] increase, decrease, or remain the same? Justify your answer.

In a saturated solution of Ag_3PO_4 at 25°C, the concentration of $Ag^+(aq)$ is 5.3×10^{-5} M. The equilibrium-constant expression for the dissolving of $Ag_3PO_4(s)$ in water is shown below.

$$K_{sp} = [Ag^+]^3 [PO_4^{3-}]$$

- (e) Write the balanced equation for the dissolving of Ag₃PO₄ in water.
- (f) Calculate the value of K_{sp} for Ag₃PO₄ at 25°C.
- (g) A 1.00 L sample of saturated Ag_3PO_4 solution is allowed to evaporate at 25°C to a final volume of 500. mL. What is $[Ag^+]$ in the solution? Justify your answer.

2006

- 1. Answer the following questions that relate to solubility of salts of lead and barium.
 - (a) A saturated solution is prepared by adding excess $PbI_2(s)$ to distilled water to form 1.0 L of solution at 25°C. The concentration of $Pb^{2+}(aq)$ in the saturated solution is found to be $1.3 \times 10^{-3} M$. The chemical equation for the dissolution of $PbI_2(s)$ in water is shown below.

$$PbI_2(s) \rightleftharpoons Pb^{2+}(aq) + 2 I^{-}(aq)$$

- (i) Write the equilibrium-constant expression for the equation.
- (ii) Calculate the molar concentration of $I^{-}(aq)$ in the solution.
- (iii) Calculate the value of the equilibrium constant, K_{sp} .
- (b) A saturated solution is prepared by adding $PbI_2(s)$ to distilled water to form 2.0 L of solution at 25°C. What are the molar concentrations of $Pb^{2+}(aq)$ and $I^{-}(aq)$ in the solution? Justify your answer.
- (c) Solid NaI is added to a saturated solution of PbI_2 at 25°C. Assuming that the volume of the solution does not change, does the molar concentration of $Pb^{2+}(aq)$ in the solution increase, decrease, or remain the same? Justify your answer.
- (d) The value of K_{sp} for the salt BaCrO₄ is 1.2×10^{-10} . When a 500. mL sample of $8.2 \times 10^{-6} \, M$ Ba(NO₃)₂ is added to 500. mL of $8.2 \times 10^{-6} \, M$ Na₂CrO₄, no precipitate is observed.
 - (i) Assuming that volumes are additive, calculate the molar concentrations of $Ba^{2+}(aq)$ and $CrO_4^{2-}(aq)$ in the 1.00 L of solution.
 - (ii) Use the molar concentrations of $Ba^{2+}(aq)$ ions and $CrO_4^{2-}(aq)$ ions as determined above to show why a precipitate does not form. You must include a calculation as part of your answer.