WORKSHEET

Acids & Bases NChO 1999

#6

- 1. Which oxide forms a basic solution when mixed with water?
 - $(A) K_2O$
- $(C) CO_2$
- (B) Al_2O_3
- (D) SO₃
- 35. Which 0.1 M solution has the highest pH?
 - (A) sodium carbonate
 - (B) sodium chloride
 - (C) ammonium carbonate
 - (D) ammonium chloride
- 36. Which is the strongest acid?
 - (A) acetic acid $(K_a = 1.8 \times 10^{-5})$
 - (B) benzoic acid $(K_a = 6.3 \times 10^{-5})$
 - (C) formic acid $(K_a = 1.8 \times 10^{-4})$
 - (D) nitrous acid $(K_a = 6.0 \times 10^{-4})$
- 37. What is the order of concentration of the ions and molecules in a nitrous acid solution?

 Nitrous acid, HNO₂, is a weak acid.
 - (A) $H_3O^+ = NO_2^- > HNO_2 > OH^-$
 - (B) $H_3O^+ = NO_2^- = HNO_2 = OH^-$
 - (C) $HNO_2 > H_3O^+ = NO_2^- > OH^-$
 - (D) $HNO_2 > NO_2^- > H_3O^+ > OH^-$

NChO 1998

- 33. A water solution of sodium carbonate,Na₂CO₃, has a pH greater than 7 because(A) it contains more carbonate ions than water molecules.
 - (B) it contains more sodium ions than carbonate ions.
 - (C) sodium ions react with water.
 - (D) carbonate ions react with water.
- 34. Which species dissociates most completely in water solution?
 - (A) NH_4^+
- (C) HNO_3
- (B) H_2CO_3
- (D) HSO_4^-

lame:	 Per:

- 37. According to Brønsted -Lowry Theory, Seat #: ____ which of these species cannot be amphoteric?
 - (A) $NH_4^+(aq)$
- (C) NH_2 (aq)
- (B) $NH_3(aq)$
- (D) $NH^{2-}(aq)$

NChO 1997

- 34. Which acid reacts with NaOH to form sodium hypochlorite (the ingredient in household bleach)?
 - (A) HOCl
- (C) HOClO₂
- (B) HOClO
- (D) HOClO₃
- 35. Which of these acids is the strongest in aqueous solution?
 - (A) H₃PO₄
- (C) HClO₃
- (B) H_2SO_3
- (D) HOCl
- 37. Normal rain water has a pH of 5.6. This is best explained by the presence of
 - (A) nitrogen oxides.
 - (B) carbon dioxide.
 - (C) sulfur oxides.
 - (D) particulates.
- 38. In a 0.050 M solution of a weak monoprotic acid, $[H^+]=1.8 \times 10^{-3}$. What is its K_a ?
 - (A) 3.6×10^{-2}
- (C) 6.7×10^{-5}
- (B) 9.0×10^{-5}
- (D) 1.6×10^{-7}

NChO 1996

- 34. According to the Brønsted-Lowry definition, a base is a substance that
 - (A) increases the hydroxide ion concentration in water.
 - (B) can react with water to form OH⁻ ions.
 - (C) can donate an electron pair to form a covalent bond.
 - (D) can accept a proton from an acid.
- 5. What is the pH of a 0.02 M solution of KOH?
 - (A) 12.3
- (C) 2.0
- (B) 12.0
- (D) 1.7

- 36. Which couple is not a conjugate acid-base pair?
 - (A) HCO_3^- and CO_3^{2-}
 - (B) H₃O⁺ and H₂O
 - (C) $H_2PO_4^-$ and PO_4^{3-}
 - (D) NH₃ and NH₂⁻
- 37. These acids are listed in order of decreasing acid strength in water.

HI > HNO₂ > CH₃COOH > HCN According to the Brønsted-Lowry theory, which anion is the weakest base?

- $(A) I^{-}$
- (C) CH₃COO⁻
- (B) NO_2^-
- (D) CN⁻
- 38. What is the [H⁺] in a 0.40 M solution of HOCl?

Substance	Equilibrium Constant, Ka
HOCl	3.5×10^{-8}

- $(A) 1.4 \times 10^{-8} M$
- (C) $1.9 \times 10^{-4} \text{ M}$
- (B) $1.2 \times 10^{-4} \text{ M}$
- (D) $3.7 \times 10^{-4} \text{ M}$
- 39. Which of these salts will give a basic solution when added to water?
 - (A) NH₄NO₃
- (C) $Ca(NO_3)_2$
- (B) $NH_4C_2H_3O_2$
- (D) $Ca(C_2H_3O_2)_2$

NChO 1995

- 2. When sodium oxide, Na₂O, is added to water, the major products expected are
 - (A) Na⁺ and OH⁻ ions
 - (B) Na⁺ ions and H₂O
 - (C) Na⁺ and O²⁻ ions
 - (D) Na⁺ and OH⁻ ions, and O₂ gas
- 36. At 0 °C the ion product constant of water, K_w , is 1.2×10^{-15} . The pH of pure water at this temperature is
 - (A) 6.88
- (C) 7.46
- (B) 7.00
- (D) 7.56

- 37. What is the $[H^+]$ in a 0.010 M solution of HCN? The equilibrium constant, K_a , for HCN equals 6.2×10^{-10}
 - (A) $3.6 \times 10^{-3} \text{ M}$
- (C) $1.0 \times 10^{-7} \text{ M}$
- (B) $2.5 \times 10^{-6} \text{ M}$
- (D) $6.2 \times 10^{-10} \text{ M}$
- 38. $HCN(aq) + HCO_3^-(aq)$

$$\rightleftharpoons$$
 CN⁻(aq) + H₂CO₃(aq)

If the value of the equilibrium constant, K, is less than 1, what is the strongest base in this system?

- (A) HCN
- $(C) CN^{-}$
- (B) HCO₃⁻
- (D) H_2CO_3
- 40. The conjugate acid of the bicarbonate ion, HCO_3^- , in H_2O is
 - $(A) H_3O^+$
- $(C) OH^{-}$
- (B) CO_3^{2-}
- (D) H_2CO_3
- 41. The sodium salt, NaA, of a weak acid is dissolved in water and no other substance is added. Which of the following statements is corrected?
 - $(A) [H^+] = [A^-]$
- $(C) [A^-] = [OH^-]$
- (B) $[H^+] = [OH^-]$
- (D) $[HA] = [OH^{-}]$
- 42. Which of these ions is predicted to produce the most acidic solution when dissolved in H₂O?
 - $(A) K^{+}$
- $(C) Co^{2+}$
- (B) Ba²⁺
- (D) Fe^{3+}
- 43. When 0.10 M solutions of the solutes; HClO₄, NH₄Br, KOH, KCN, are arranged in order in increasing [H⁺], the correct order is
 - $(A)\ KOH < KCN < NH_4Br < HClO_4$
 - (B) $KCN < KOH < HClO_4 < NH_4Br$
 - (C) $HClO_4 < NH_4Br < KCN < KOH$
 - (D) $NH_4Br < HClO_4 < KOH < KCN$