

Nar	ne:					Date:	Period:	Seat #:
01	11	1.0	1	 1	C 1			

Show all work for each question, box your final answer

[1] For the following aqueous equilibria, designate the Brønsted-Lowry conjugate acid-base pairs and establish the weaker side:						
[a] $NH_3(aq) + H_2O(l) \Leftrightarrow NH_4^+(aq) + OH^-(aq)$						
Brønsted-Lowry conjugate acid:	Brønsted-Lowry conjugate base:	Weaker side:				
[b] $HCN(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + CN^-(aq)$						
Brønsted-Lowry conjugate acid:	Brønsted-Lowry conjugate base:	Weaker side:				
$[c] \qquad NH_4^+(aq) + CO_3^{2-}(aq) \Leftrightarrow NH_3(aq) + HCO_3^-(aq)$						
Brønsted-Lowry conjugate acid:	Brønsted-Lowry conjugate base:	Weaker side:				

[2] Complete the Brønsted-Lowry equilibria, label the components acid or base, and pair up the conjugate acid-base pairs: $HSO_4^- + H_2O \Leftrightarrow$

 $NH_3 + H_2O \Leftrightarrow$

 $CN^- + H_2O \Leftrightarrow$

 $\mathrm{H}^{-} + \mathrm{H}_{2}\mathrm{O} \Leftrightarrow$

 $HClO_4 + H_2O \Leftrightarrow$

[3] Of the following acids,				
$[i] HNO_3 (aq) + H_2O(l) \Leftrightarrow H_3O^+ (aq) + NO_3^- (aq) \mathbf{K}_{\mathbf{a}} = \mathbf{very} \mathbf{large}$				
$[ii] HSO_4^{-}(aq) + H_2O(l) \Leftrightarrow H_3O^{+}(aq) + SO_4^{2-}(aq) \mathbf{K}_a = \mathbf{1.2 x 10^{-2}}$				
$[iii] \text{HCN} (aq) + \text{H}_2\text{O}(l) \Leftrightarrow \text{H}_3\text{O}^+ (aq) + \text{CN} (aq) \mathbf{K}_a = 4.0 \mathbf{x} 10^{-10}$				
$[iv]$ H ₂ CO ₃ (aq) + H ₂ O(l) \Leftrightarrow H ₃ O ⁺ (aq) + HCO ₃ ⁻ (aq) K _a = 4.2 x 10 ⁻⁷				
$[v] NH_4^+ (aq) + H_2O(l) \Leftrightarrow H_3O^+ (aq) + NH_3 (aq) K_a = 5.6 x 10^{-10}$				
$[vi] HF (aq) + H_2O(l) \Leftrightarrow H_3O^+ (aq) + F^- (aq) K_a = 7.2 \times 10^{-4}$				
Determine:				
[a] The strongest acid				
[b] The acid that produces the lowest concentration of hydronium ions per mole of acid				
[c] The acid with the strongest conjugate base				
[d] The diprotic acid				
[e] The strong acid				
[f] The acid with the weakest conjugate base				

[4] What is the pH of
a. 0.0010 M HCl solution? 3.0
b. 0.15 M KOH solution? 13.2
c. 10 ⁻⁸ M HNO ₃ solution? 6.96

[5] Complete the table for each aqueous solution at 25°C. State whether the solutions are acidic or basic.

[H ₃ O ⁺]	[OH ⁻]	pН	рОН	Acidic or Basic
2.0 x 10 ⁻⁵				
		6.25		
	5.6 x 10 ⁻²			
			9.20	
8.7 x 10 ⁻¹⁰				

[6] If the pH of a sample of rainwater is 4.62, what is the hydronium ion concentration $[H_3O^+]$ and the hydroxide ion concentration $[OH^-]$ in the rainwater? ($[H_3O^+] = 2.4E^{-5}$, $[OH^-] = 4.2E^{-10}$)

[7] Hydroxylamine is a weak base with a $K_b = 6.6 \times 10^{-9}$. What is the pH of a 0.36 M solution of hydroxylamine in water at 25°C? 9.69

[8] Which of the following salts, when dissolved in water to produce 0.10 M solutions, would have the lowest pH?				
a. sodium acetate	d. magnesium nitrate			
b. potassium chloride	e. potassium cyanide			
c. sodium bisulfate	Explain why:			

[9a] Cyanic acid HOCN has a $K_a = 3.5 \times 10^{-4}$, what is the K_b for the cyanate ion OCN^{-?} $K_b = 2.86 \times 10^{-11}$

[b] Phenol is a relatively weak acid, $K_a = 1.3 \times 10^{-10}$. How does the strength of its conjugate base compare with the strength of ammonia ($K_b = 1.8 \times 10^{-5}$), the acetate ion ($K_b = 5.55 \times 10^{-10}$), and sodium hydroxide?