Name:

Show all work

Consider the reduction potential chart. Find and copy the reduction equations for $Ag^+ \rightarrow Ag^\circ$ and $Pb^{2+} \rightarrow Pb^\circ$

Silver reduction equation:	Potential Value:
$Ag^+ + e^- \rightarrow Ag$	$E^{\circ} = + 0.80 V$
Lead reduction equation:	Potential Value:
$Pb^{2+} + 2e^- \rightarrow Pb$	E° = - 0.13 V

Date:

Period:

KEY

ŀ

Seat #:

1. Which metal ion has the greater reduction potential?	2. If these two metals (and their solutions) were used to create a galvanic cell, which metal would be the anode?
Ag	Pb
3. Write the reaction at the anode:	4. Write the reaction at the cathode:
$Pb \rightarrow Pb^{2+} + 2e^{-}$	$Ag^+ + e^- \rightarrow Ag$
5. What is the overall reaction?	6. What would be the voltage of the standard electrochemical cell?
$2Ag^+ + Pb \rightarrow Pb^{2+} + Ag$	$E^{\circ} = +0.80 V + 0.13 V = 0.93 V$
7. How many moles of electrons are involved in this reaction? n =	8. Find and copy down the Nernst Equation:
n = 2	$E_{cell} = E_{cell}^{\circ} - \left(\frac{0.0592}{n}\right) Ln Q$
9. If the standard cell is allowed to run until the $[Ag^+] = 0$ <u>LESS</u> (greater / less)?	0.50 M , the $[Pb^{2+}] = 2.0 \text{ M}$, the cell voltage will be

10. Use the Nernst equation to calculate the cell voltage with these new concentrations

$$E_{cell} = 0.93V - \left(\frac{0.0592}{2}\right) Ln \left(\frac{2.0 M}{0.75M}\right) = 0.91 V$$