Name: Date:	Period:	Seat #:
-------------	---------	---------

Show all work

Standard Reduction Potential	E° (volts)
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(1)$	+1.23
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$I_2(s) + 2e^- \rightarrow 2I(aq)$	+0.535
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.337
$SO_4^{2-}(aq) + 4 H^+(aq) + 2e^- \rightarrow SO_2(g) + 2 H_2O$	+0.20
$2 \text{ H}^+(\text{aq}) + 2 \text{ e}^- \rightarrow \text{H}_2(\text{g}) \text{ (reference electrode)}$	0.00
$2H_2O(1) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.828
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.714
$K^+(aq) + e^- \rightarrow K(s)$	-2.93

- 1. All of the equations in the chart above are written as **REDUCTIONS** (oxidations/reductions).
- 2. The chemicals at the upper left (Cl₂ and O₂) are the most likely to be <u>**REDUCED**</u> (oxidized/reduced) and therefore the best <u>**OXDIZING AGENTS**</u> (oxidizing agents/reducing agents).
- 3. The chemicals at the lower right (Na and K) are the most likely to be **OXIDIZED** (oxidized/reduced) and therefore the best **REDUCING AGENTS** (oxidizing agents/reducing agents).
- 4. In an electrolytic cell, the (–) electrode is negative because it has **TOO MANY** (too many/too few) electrons. Chemicals that come into contact with the (–) electrode will **GAIN** (gain/lose) electrons and be **REDUCED** (oxidized/reduced). The (–) electrode in electrolysis is called the **CATHODE** (cathode/anode).
- 5. Write the change that water goes through at the (-) electrode. $2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-$
- 6. In an electrochemical cell, the (+) electrode is positive because is has **TOO FEW** (too many/too few) electrons. Chemicals that come into contact with the (+) electrode will **LOSE** (gain/lose) electrons and be **OXDIZED** (oxidized/reduced). The (+) electrode in electrolysis is called the **ANODE** (cathode/anode).
- 7. Write the change that water goes through at the (+) electrode. $2H_2O(l) \rightarrow 4e^- + 4H^+(aq) + O_2(g)$
- 8. Add these two reactions together (make certain the electrons cancel) and write the overall reaction for the electrolysis of water. $2H_2O(I) \rightarrow H_2(g) + O_2(g)$
- 9. We will perform this electrolysis using an aqueous solution of sodium sulfate. Both the Na⁺ and H₂O will be near the (–) electrode. Which chemical is more likely to be reduced? $\underline{\mathbf{H}_2\mathbf{O}}$, $E_{Na^+}^{\circ} = -2.714 \, V$, $E_{H_2o}^{\circ} = -0.828$, more + is reduced
- 10. Both the SO_4^{2-} and H_2O will be near the (+) electrode. Which chemical will be oxidized? $\underline{H_2O}$
- * SO₄²⁻ cannot be oxidized therefore H₂O must be

[11] In the electrolysis of KI(aq)			
Both the K ⁺ and H ₂ O will be near the (–) electrode. Which chemical is more likely to be reduced? <u>H₂O, look at chart above, E^o</u>			
Both the I ⁻ and H ₂ O will be near the (+) electrode. Which chemical is more likely to be oxidized? $\overline{\underline{\Gamma}}$			
Write the reactions at each electrode and the overall reaction:			
Cathode	Anode		
$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	$2I^- \rightarrow I_2 + 2e^-$		
Overall			
$2H_2O + 2I^- \rightarrow H_2 + 2OH^- + I_2$			

[12] In the electrolysis of CuSO ₄ (aq)			
Both the Cu^{2+} and H_2O will be near the (-) electrode. Which chemical will be reduced? $\underline{Cu^{2+}}$			
Both the SO_4^{2-} and H_2O will be near the (+) electrode. Which chemical will be oxidized? $\underline{H_2O}$			
Write the reactions at each electrode and the overall reaction:			
Cathode	Anode		
$2Cu^{2+} + 4e^{-} \rightarrow 2Cu$	$2H_2O(l) \rightarrow 4e^- + 4H^+(aq) + O_2(g)$		
Overall			
$2Cu^{2+} + 2H_2O \rightarrow 2Cu + 4H^+(aq) + O_2(g)$			

[13] Silver plating occurs when electrolysis of a Ag_2SO_4 solution is used because silver metal is formed at the <u>CATHODE</u> (cathode/anode).

This is the (-) (+/-) electrode. The reaction at this electrode is: $\mathbf{A}\mathbf{g}^+ + \mathbf{e}^- \to \mathbf{A}\mathbf{g}$ (reduction)

Recall that 1 amp·sec = 1 Coulomb and 96,500 Coulombs = 1 mole e-'s (Faraday's constant). If a cell is run for 200. seconds with a current of 0.250 amps, how many grams of Ag° will be deposited?

200 s x 0.250 amps x
$$\frac{1 C}{1 \text{ amp} \cdot \text{s}} x \frac{1 \text{ mol } e^{-}}{96,500 C} x \frac{1 \text{ mol } Ag}{1 \text{ mol } e^{-}} x \frac{107.87 \text{ g } Ag}{1 \text{ mol } Ag} = \mathbf{0}.\mathbf{056} \text{ g } \mathbf{Ag}$$