THERMODYNAMICS

Entropy

#1 - a thermodynamic function that increases as the number of energetically equivalent ways of arranging the components increases, S.

• Units are usually J/mol K

#2 – Random systems are more energetically stable, lower energy, than ordered systems

#3 – Increase in entropy of the universe is the driving force for spontaneous reactions.

#4 – Nature proceeds toward the states that have the highest probabilities of existing.

Positional Entropy

The probability of occurrence of a particular state depends on the number of ways (microstates) in which that arrangement can be achieved

Macrostate State vs Microstate

- These microstates all have the same macrostate.
- So there are six different particle arrangements that result in the same macrostate.
- The individual unique particles make up the microstate, the overall "big picture" is the macrostate

Entropy change is favorable when the result is a more random system.

• When ΔS is positive.

Some changes that increase entropy:

#1 - Rxn's whose products are in a more random state

Some changes that increase entropy:

#2 - Rxn's that have larger numbers of product molecules than reactant molecules

Some changes that increase entropy:

#3 - Rxn's that have an increase in temperature (exothermic)

Some changes that increase entropy:

#4 - Rxn's that have solids dissociating into ions

State of Matter

(at a particular temperature)

Molar Mass

- The larger the molar mass, the larger the entropy.
- Seems a little counter intuitive...its complicated
 Available energy states are more closely spaced, allowing more dispersal of energy through the states.

Molecular Complexity

- Larger, more complex molecules generally have larger entropy. – Larger/Complex doesn't always mean molar mass!
- More energy states are available, allowing more dispersal of energy through the states.

Molar Mass (g/mol)		S°(J/mol~K)
Ar(g)	39.948	154.8
NO(g)	30.006	210.8

	Molar Mass(g/mol)	S°(J/mol~K)
CO(g)	28.01	197.7
$C_2H_4(g)$	28.05	219.3

Dissolution

 Dissolved solids generally have larger entropy, distributing particles throughout the mixture.

	S°(J/mol~K)
KClO ₃ (s)	143.1
KClO ₃ (aq)	265.7

2nd Law of Thermodynamics

The total entropy change of the universe must be positive for a process to be spontaneous

Reversible process - $\Delta S_{univ} = 0$ **Irreversible spontaneous process** - $\Delta S_{univ} > 0$

2nd Law of Thermodynamics

$$\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$$

 If the entropy of the system ↓
Then the entropy of the surroundings must ↑ by a larger amount.

2nd Law of Thermodynamics

$$\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$$

• When ΔS_{system} is negative, $\Delta S_{\text{surroundings}}$ must be positive and bigger for a spontaneous process.

Relating Entropy to Heat Energy

The entropy change in the surroundings is proportional to the amount of heat gained or lost.

$q_{\rm surroundings} = -q_{\rm system}$

(Equal but opposite sign)

(Sometimes it is easier to measure surroundings than the system, or vice versa – our lab experiments can exploit this fact sometimes to make our life more convenient.)

Relating Entropy to Heat Energy

The entropy change in the surroundings is also inversely proportional to its temperature.

At constant pressure and temperature:

$$\Delta S_{\text{surroundings}} = \frac{-q_{\text{system}}}{T} = \frac{-\Delta H_{\text{system}}}{T}$$

Standard Entropy Change, ΔS°

Standard entropy change - the difference in absolute entropy between the reactants and products under standard conditions.

$$\Delta S^{0}_{\text{reaction}} = \sum n_{p} S^{0}_{\text{products}} - \sum n_{r} S^{0}_{\text{reactants}}$$

Remember - although the standard enthalpy of formation, ΔH_f° , of an element is 0 kJ/mol, the absolute entropy at 25 °C, S°, is always positive, not zero!