THERMODYNAMICS

Gibbs Free Energy

Now it is time for some math!

Yay

Gibbs free energy, G - the maximum amount of work energy that can be released to the surroundings by a system for a constant temp and pressure system.

Gibbs free energy is often called the chemical potential because it is similar to the storing of energy in a mechanical system.

It can be shown that:

$$-\mathsf{T}\Delta S_{\mathsf{univ}} = \Delta H_{\mathsf{sys}} - \mathsf{T}\Delta S_{\mathsf{sys}}$$

This turns into...

It can be shown that:

$$-\mathsf{T}\Delta S_{\mathsf{univ}} = \Delta H_{\mathsf{sys}} - \mathsf{T}\Delta S_{\mathsf{sys}}$$

This turns into...

$$\Delta G_{\rm sys} = \Delta H_{\rm sys} - T\Delta S_{\rm sys}$$

Important Equation!!!

$$-T\Delta S_{\text{univ}} = \Delta H_{\text{sys}} - T\Delta S_{\text{sys}}$$
$$\Delta G_{\text{sys}} = \Delta H_{\text{sys}} - T\Delta S_{\text{sys}}$$

- Because ΔS_{univ} determines if a process is spontaneous, ΔG also determines spontaneity.
- ΔS_{univ} is positive when spontaneous, so ΔG is negative.

A process will be spontaneous when ΔG is negative

Important fact that lets us do a lot of math!

It is very common for them to ask you to predict if a reaction is spontaneous based on just the algebraic sign on ΔH and ΔS

You need to use the Gibbs equation to see if △G ends up + or -

$$\Delta G_{\rm sys} = \Delta H_{\rm sys} - T\Delta S_{\rm sys}$$

	$\Delta H_{\rm sys} - T\Delta S_{\rm sys} = \Delta G_{\rm sys}$				
-	ΔH	ΔS	ΔG	At	
		+		Any	
	exothermic	more disorder	ALWAYS spont.	temperature	

(Negative #) $- a_{ny}$ T(Positive #) = Always Negative #

Remember T is in Kelvin, always a positive number

	COMBO	$\Delta H_{\rm sys}$ -T $\Delta S_{\rm sys} = \Delta G_{\rm sys}$		
N	ΔH	ΔS	ΔG	At
	+ endothermic	- less disorder	+ NEVER spont.	Any temp

(Positive #) $- a_{ny}$ T(Negative #) = Always Positive #

Notice the double negative! → (Positive #) + (Positive #)

$\Delta H_{\text{sys}} - T\Delta S_{\text{sys}} = \Delta G_{\text{sys}}$			
ΔH	ΔS	ΔG	At
+ endothermic	+ more disorder	spont.	High Temp

(Positive #) - $_{large}$ T(Positive #) = Negative #

 ΔH needs to be a smaller positive number than $T\Delta S_{\rm sys}$ Small # - Big # = Negative # $\Delta H < T\Delta S_{\rm sys}$

LARIABO!	$\Delta H_{\rm sys}$ -T ΔS	$\Delta G_{\rm sys} = \Delta G_{\rm sys}$	
ΔH	ΔS	ΔG	At
			Low Temp
exothermic	less disorder	spont.	LOW ICITIP

(Negative #) – $_{small}$ T(Negative #) = Negative # Notice the double negative! \rightarrow (Negative #) + (Positive #) $\triangle H$ needs to be a larger negative than $\top \triangle S_{sys}$ $\triangle H < \top \triangle S_{sys}$

This always makes my brain feel scrambled... figure out what works for you.

- Flat out memorize it (best, fastest)
- Write out the equation and +/- and walk through the mental math each time (what I do because I'm lazy, and I'm not taking timed tests like you are – ha!)
- Find/make a mnemonic? (Tell me if you find a good one!)

YOU CANT LET YOUR BRAIN SHUT DOWN Don't let it feel confused and shut off... just walk through it slowly...

$\Delta H_{\rm sys} - T\Delta S_{\rm sys} = \Delta G_{\rm sys}$				
ΔH	ΔH ΔS ΔG			
e xothermic	+ more disorder	ALWAYS spont.	Any temp	
+ endothermic	less disorder	+ NEVER spont.	Any temp	
e xothermic	less disorder	spont.	Low Temp	
e xothermic	less disorder	┿ NOT spont.	High Temp	
+ endothermic	+ more disorder	spont.	High Temp	
+ endothermic	+ more disorder	┿ NOT spont.	Low Temp	

0>#4

O < HA

DS70

spontaneous at all T (DG<0) spontaneous at high T (when TDS is large)

DS40

Spontaneous at 10w T (when TDS is small)

Non-spontaneous at all T $(\Delta G > 0)$

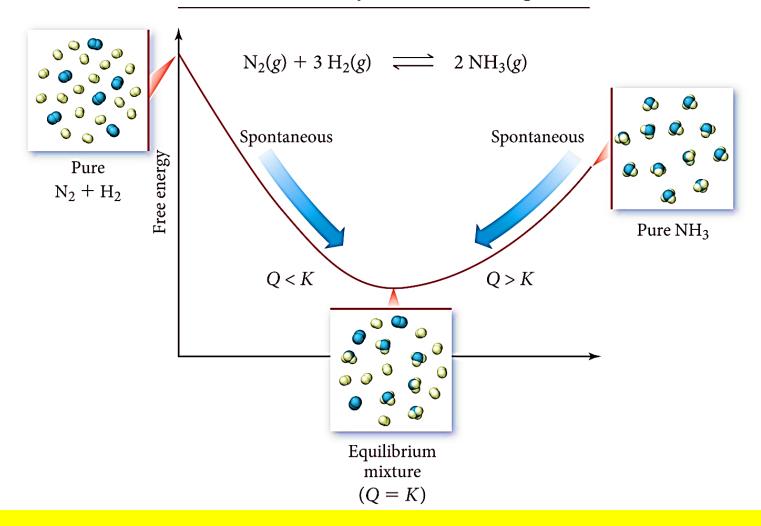
So many versions online, find one you like! If you find a good one, always share with me! ©

Gibbs at Equilibrium

When $\Delta G = 0$ the reaction is at equilibrium.

Gibbs at Equilibrium

Gibbs Free Energy Determines the Direction of Spontaneous Change



Calculating Free Energy

Method #1- Gibbs-Helmohotz Equation

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

For reactions at a constant temperature

Calculating Free Energy

Method #2- A variation of Hess's Law

$$C_{\text{diamond}}(s) + O_2(g) \rightarrow CO_2(g) \qquad \Delta G^0 = -397 \text{ kJ}$$

$$C_{\text{graphite}}(s) + O_2(g) \rightarrow CO_2(g) \qquad \Delta G^0 = -394 \text{ kJ}$$

$$C_{\text{diamond}}(s) + O_2(g) \rightarrow CO_2(g) \qquad \Delta G^0 = -397 \text{ kJ}$$

$$CO_2(g) \rightarrow C_{\text{graphite}}(s) + O_2(g) \qquad \Delta G^0 = +394 \text{ kJ}$$

$$C_{\text{diamond}}(s) \rightarrow C_{\text{graphite}}(s) \qquad \Delta G^0 = -3 \text{ kJ}$$

Calculating Free Energy

Method #3- Standard Free Energy of Formations

$$\Delta G^{0} = \sum n_{p} \Delta G_{f \text{(products)}}^{0} - \sum n_{r} \Delta G_{f \text{(reactants)}}^{0}$$

 ΔG_f^0 of an element in its standard state is zero

Free Energy and Pressure

- Enthalpy, H, is not pressure dependent
- Entropy, S <u>yes</u> pressure dependent
 - -Depends on volume, so also depends on pressure
- So Gibbs will change because S changes
 - S_{large volume} > S_{small volume}
 - S_{low pressure} > S_{high pressure}

$$\Delta G = \Delta G^{\circ} + RTLn(Q),$$

Where ΔG is at some non standard condition, and ΔG^0 is standard 1 atm, Q is some condition not at equilibrium

 $\frac{Remember}{K} - K = equilibrium, Q = not at equilibrium$ K = Q at equilibrium

Equilibrium point occurs at the lowest value of free energy available to the reaction system

At equilibrium: $\Delta G = 0$ and Q = K

$\Delta \mathbf{G}^0$	K
$\Delta G^0 = 0$	K = 1
$\Delta G^0 < 0$	K > 1
$\Delta G^0 > 0$	K < 1

$$\Delta G = \Delta G^{\circ} + RTLn(Q)$$

So if at equilibrium $\Delta G = 0$ and K = Q ...

$$0 = \Delta G^{\circ} + RTLn(K)$$

Then rearrange...

$$\Delta G^{\circ} = -RTLn(K)$$

where R=8.314J/mol•K

Reminder....

If you use the Hess's Law style method for Gibbs problems, where you have to add together various rxns, you need to edit your Keq value when you add/multiply your equations!

Multiplying an Equation – Raise K to that exponent

Double the Rxn = K^2 Half the Rxn = $K^{\frac{1}{2}}$

Adding Reactions at the End – Multiply K values

$$K_{overall} = K_1 \times K_2 \times K_3$$
, etc

Then you can do things like - ΔG° = -RTLn(K)

So if...

$$\Delta G^{\circ} = -RTLn(K)$$

And if...

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

Then...

$$\Delta G^{0} = -RT \ln(K) = \Delta H^{0} - T\Delta S^{0}$$

$$\left| \Delta G^0 = -RT \ln(K) = \Delta H^0 - T\Delta S^0 \right|$$

Rearrange to solve for ln(K)....

$$\ln(K) = -\frac{\Delta H^0}{RT} + \frac{\Delta S^0}{R} = -\frac{\Delta H^0}{R} \left(\frac{1}{T}\right) + \frac{\Delta S^0}{R}$$

So.... In(K) \propto 1/T And that equation looks like y = mx + b

You can find ΔH° and ΔS° by graphing!

$$\ln(K) = -\frac{\Delta H^{\circ}}{R} \left(\frac{1}{T}\right) + \frac{\Delta S^{\circ}}{R}$$

$$\mathbf{y} = \mathbf{m} \quad \mathbf{x} + \mathbf{b}$$

- 1st Graph In(K) vs $\left(\frac{1}{T}\right)$ 2nd Find line of best fit (Excel or graphing calculator) 3rd Slope = $-\frac{\Delta H^{\circ}}{R}$ Intercept = $\frac{\Delta S^{\circ}}{R}$

$$3^{rd}$$
 - Slope = $-\frac{\Delta H^{\circ}}{R}$ Intercept = $\frac{\Delta S^{\circ}}{R}$

Soooo many rearrangements...

 There are so many ways to rearrange, substitute, and solve for various things when it comes to Thermodynamics.

You HAVE to have decent algebra skills!

- My best advice if algebra is not your strong suit...
 - -Practice over and over until it becomes "muscle memory" how to rearrange.
 - Every time you have a question that requires a different equation rearrangement/substitution, write it down! Start making your own equation cheat sheet.

For the Rx: **2NO(g)** + **O₂(g)** \rightarrow **2NO₂(g)** ΔS°_{rxn} = -146.5 J/mol•K Calculate the standard molar entropy of O₂(g). $\Delta S^{\circ}_{NO(g)}$ = 210.8 J/mol•K , $\Delta S^{\circ}_{NO2(g)}$ = 240.1 J/mol•K

- -175.8 J mol⁻¹K⁻¹
- **B** 269.4 J mol⁻¹K⁻¹
- **C** -205.1 J mol⁻¹ K⁻¹
- **D** 205.1 J mol⁻¹ K⁻¹
- None of the above

For the Rx: **2NO(g)** + $O_2(g) \rightarrow 2NO_2(g) \Delta S^{\circ}_{rxn} = -146.5 \text{ J/mol} \cdot \text{K}$ Calculate the standard molar entropy of $O_2(g)$.

$$\Delta S^{\circ}_{NO(g)} = 210.8 \, \text{J/mol} \cdot \text{K}$$
 , $\Delta S^{\circ}_{NO2(g)} = 240.1 \, \, \text{J/mol} \cdot \text{K}$

$$\Delta S_{rxn} = \Sigma \, \Delta S_{Products} - \Sigma \, \Delta S_{reactants}$$

$$(-146.5) = [2(240.1)] - [2(210.8) + \Delta S^{\circ}_{O2}]$$

$$\Delta S^{\circ}_{O2} = 205.1 \text{ Jmol}^{-1} \text{K}^{-1}$$

For the following Rx: $N_2(g) + H_2(g) \rightarrow NH_3(g)$ Calculate the standard Free Energy, ΔG° for the rxn at 25°C. $\Delta H^{\circ} = -264 \text{kJ/mol}$ $\Delta S^{\circ} = -278 \text{ J/mol} \bullet \text{K}$

- -82.5 KJ mol⁻¹
- **B** -181 KJ mol⁻¹
- **C** -6686 KJ mol⁻¹
- **D** 181 KJ mol⁻¹
- None of the above

For the following Rx: $N_2(g) + H_2(g) \rightarrow NH_3(g)$ Calculate the standard Free Energy, ΔG° for the rxn at 25°C. $\Delta H^{\circ} = -264 \text{kJ/mol}$ $\Delta S^{\circ} = -278 \text{ J/mol} \bullet \text{K}$

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$\Delta G^{\circ} = (-264) - 298(-0.278)$$

$$\Delta G^{\circ} = -181 \text{ KJ mol}^{-1}$$

Careful about units matching! H and S usually don't match! Convert before you use them! Calculate the Boiling Point of BCl₃.

 $BCl_{3(1)} \leftrightarrow BCl_{3(g)}$. Given:

	ΔH^{o}_{f}	S°
	kJ/mol	J/mol k
BCl ₃ (/)	-418	209
$BCI_3(g)$	-395	290

A	352	K

C 322 K

D 284 K

E 10 K

Calculate the Boiling Point of BCl₃.

 $BCl_{3(1)} \leftrightarrow BCl_{3(g)}$. Given:

Phase change - at equilibrium! So $\triangle G = 0$

	∆H° _f kJ/mol	∆S° J/mol k
BCl ₃ (/)	-418	209
$BCl_3(g)$	-395	290

A	352	K

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$0 = (-395 - -418) - T(0.290 - 0.209)$$

$$T = 284 K$$

What is ΔG° for the following Rx @ 25.0°C: **2** NH₃(g) \rightarrow N₂(g) + 3 H₂(g) ΔH° = 92.4 kJ, ΔS° = 198 J/K

- -58911.6 kJ
- **B** 33.40 kJ $\Delta G^{\circ} = \Delta H^{\circ} T \Delta S^{\circ}$
- $\triangle G^{\circ} = (92.4) 298(0.198)$
- **D** 87.45 kJ $\Delta G^{\circ} = 33.4 \text{ kJ}$
- **E** -4857.6 kJ

What is ΔG° for the following Rx @ 25.0°C: **2** NH₃(g) \rightarrow N₂(g) + 3 H₂(g) ΔH° = 92.4 kJ, ΔS° = 198 J/K

- -58911.6 kJ
- **B** 33.40 kJ $\triangle G^{\circ} = \triangle H^{\circ} T \triangle S^{\circ}$
- **C** -497.64 kJ $\Delta G^{\circ} = (92.4) 298(0.198)$
- **D** 87.45 kJ $\Delta G^{\circ} = 33.4 \text{ kJ}$
- **E** -4857.6 kJ

Under standard conditions (1 atm of NH₃, N₂ and H₂) and at 298 K, what will be formed? ($\Delta G^{\circ} = 33.4 \text{ kJ}$)

2 NH₃(g) \rightarrow N₂(g) + 3 H₂(g)

- A NH₃
- $oldsymbol{B}$ N_2 and H_2
- © Equal amounts of all three gases
- Need more information

Under standard conditions (1 atm of NH₃, N₂ and H₂) and at 298 K, what will be formed? ($\Delta G^{\circ} = 33.4 \text{ kJ}$)

2 NH₃(g) \rightarrow N₂(g) + 3 H₂(g)

- A NH₃
- \mathbf{B} N_2 and H_2
- C Equal amounts of all three gases
- Need more information

 ΔG = + so not spontaneous in reverse direction, reactants will be produced not products

Calculate the equilibrium constant for this reaction at 298 K. 2 $NH_3(g) \rightarrow N_2(g) + 3 H_2(g) (\Delta G^\circ = 33.4 \text{ kJ})$

- **A** 1.014
- **B** 609048.5
- **C** 1.397 E-6
- Need to know equilibrium []'s to calculate Keq

Calculate the equilibrium constant for this reaction at 298 K. 2 $NH_3(g) \rightarrow N_2(g) + 3 H_2(g) (\Delta G^\circ = 33.4 \text{ kJ})$

$$\Delta G^{\circ} = -RT \ln(K)$$

$$\triangle$$
 1.014 33400= -(8.314)(298)ln(K)

B
$$609048.5$$
 $-13.48 = ln(K)$

C 1.397 E-6
$$e^x = y$$
 $ln(y) = x$ $e^{-13.48} = K$

Need to know $K = 1.397 \times 10^{-6}$ equilibrium []'s to calculate Keq