		٦
I	WORKSHEET #2	I

Name:	Date:	Period:	Seat #:
Show all work	$\Delta G^{\circ} = \Sigma \Delta G_{f}^{\circ} \ products - \Sigma$	$\Sigma\Delta G_f^\circ$ reactants	

[1] Calculate G° in kJ for the following reactions, using the appropriate data tables.

(a) SO ₃ (g) + H ₂ O(l) \rightarrow H ₂ SO ₄ (l)		$\Delta H_f^{\circ} \left(\frac{kJ}{mol}\right)$	$\Delta G_f^{\circ}\left(\frac{kJ}{mol}\right)$	$\Delta S^{\circ} \left(\frac{J}{mol \cdot K}\right)$
(b) 2 NH ₄ Cl(s) + CaO(s) \rightarrow CaCl ₂ (s) + H ₂ O(l) + 2 NH ₃ (g)	CaCl ₂	-795	-750.2	114
(c) CaSO ₄ (s) + 2 HCl(g) \rightarrow CaCl ₂ (s) + H ₂ SO ₄ (l)	CH ₃ Cl	-83.7	-60.2	234
(d) C ₂ H ₄ (g) + H ₂ O(l) \rightarrow C ₂ H ₅ OH(l)	KCl	-436.69	-408.8	82.55
(e) $Ca(s) + 2 H_2SO_4(l) \rightarrow CaSO_4(s) + SO_2(g) + 2 H_2O(l)$	K2SO4	-1437.8	-1321.4	175.6

[2] When solid potassium iodide is dissolved in water, a cooling of the mixture occurs because the solution process is endothermic for these substances. Explain, in terms of what happens to the molecules and ions, why this mixing occurs spontaneously?

[3] Predict the algebraic sign of the entropy change for the following reactions?

$(a) PCl_3(g) + Cl_2(g) \rightarrow PCl_5(g)$	(b) $SO_2(g) + CaO(s) \rightarrow CaSO_3(s)$
$(c) \operatorname{CO}_2(g) + \operatorname{H}_2O(l) \to \operatorname{H}_2CO_3(aq)$	(d) Ni(s) + 2 HCl(aq) \rightarrow H ₂ (g) + NiCl(aq)
(e) $I_2(s) \rightarrow I_2(g)$	(f) $Cl_2(g) + Br_2(g) \rightarrow 2 BrCl(g)$
(g) $NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$	(h) $CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s)$

[4] Show that ΔS for the melting of ice is positive

Conceptually	Quantitatively

(a) $CaO(s) + 2 HCl(g) \rightarrow CaCl_2(s) + H_2O(l)$	(b) $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$

[7] Predict the probability of the following reactions by approximating the sign of ΔG . Classify each reaction as exothermic or endothermic.

a) $H_2O(l) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$	$\Delta H = +285 \text{ kJ}$	
	$TAS = 245 I_{\rm eI}$	
	$1\Delta S = -243 \text{ kJ}$	
b) $C_{c}H_{u}(\alpha) \rightarrow 6C(\alpha) + 7H_{0}(\alpha)$	AH = +167 kI	
$0) C_{6}\Pi^{14}(g) \rightarrow 0 C(s) + 7 \Pi^{2}(g)$	$\Delta \Pi = 107 \text{ KJ}$	
	$T\Delta S = +168 \text{ kJ}$	
	AIL 2011	
c) 2 Fe(s) + $\frac{1}{2}$ N ₂ (g) \rightarrow Fe ₂ N(s)	$\Delta H = -3.8 \text{ kJ}$	
	TAS = -14.6 kJ	
d) $HCl(g) + H_2O(l) \rightarrow H_3O_+(aq) + Cl(aq)$	$\Delta H = -75.3 \text{ kJ}$	
	TAS = -39.3 kI	
	1 <u>1</u> 1 <u>1</u> 1 <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	
	1	

[8] Calculate ΔG_0 in kJ/mole for the following reactions, using the appropriate data tables from your textbook appendix. (a) SO₃(g) + H₂O(*l*) \rightarrow H₂SO₄(*l*)

(b) 2 NH₄Cl(s) + CaO(s) \rightarrow CaCl₂(s) + H₂O(l) + 2 NH₃(g)

(c) CaSO₄(s) + 2 HCl(g) \rightarrow CaCl(s) + H₂SO₄(*l*)

[9] For the reaction at 298.2 K >>> 2 NO₂(g) \rightarrow N₂O₄(g) a) The values of Δ H₀ and Δ S₀ are -58.03 kJ mol-1 and -176.61 J K-1mol-1 respectively. What is the value of Δ G₀ at 298.2 K?

b) At what temperature is $\Delta G_0 = 0$?

c) Is ΔG negative above, or below, this temperature?