		-
	WORKSHEET #3	I
-		

NO

NO

NO

NO

NO

Name:	Date:	Period:	Seat #:	
Show all work	$G^{\circ} = \Sigma \Delta G_{f}^{\circ} products - \Sigma$	$\Sigma\Delta G_{f}^{\circ}$ reactants		
[1] Which of the following processes an	re spontaneous?			
a. Spreading the fragrance of perfume through	ough a room		YES	NO
b. Separating a mixture of N2 and O2 into	pure containers of each		YES	NO
c. Bursting of a normally inflated balloon			YES	NO
d. The reaction of sodium metal with chlo	prine gas to form NaCl		YES	NO
e. The dissolution of NaCl(s) in water for	m NaCl(aq)		YES	NO
b. What is the sign of q for the process?				
[3] The normal boiling point of methanol is a. When methanol boils at its normal boili			/mol.	
b. Calculate the value of ΔS when 1.00 m	ol of methanol is vaporized at 64.7°	°C.		

a. In a reaction, 2 moles of gaseous reactants \rightarrow 3 moles gaseous products.

b. In a chemical reaction, two gases combine to form a solid.

[5] In which of the following situations does entropy of the system increases?YESa. Melting of ice cubesYESb. Dissolving sugar in a cup of hot coffeeYESc. Formation of methane and oxygen gas from CO2 and H2OYESd. A solid sublimesYESe. Volume of a gas increasesYES

[6] For each of the following pairs, circle the one with the higher entropy per mole at room temp. Explain why.

a. Ar(<i>l</i>) or Ar(g)	b. He(g) at 3atm or He(g) at 1.5atm

[7] Predict the sign of the entropy change of the system for each reaction. Explain why.

[7] Flediet the sign of the entropy entrifie of the system for each federion. Explain why:				
a. $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$	NEGATIVE	POSITIVE		
b. $Ba(OH)_2(s) \rightarrow BaO(s) + H2O(g)$	NEGATIVE	POSITIVE		
c. $CO(g) + 2H_2(g) \rightarrow CH3OH(l)$	NEGATIVE	POSITIVE		

$\Delta S^{\circ} = \Sigma \Delta S^{\circ} products - \Sigma \Delta S^{\circ} reactants$

[8] Using S° values from Appendix Four, calculate Δ S° values for each reaction.

[0] Using b values nom Appendix I out, calculate Δb values for each reaction.		
		$\Delta S^{\circ}(\frac{J}{mol \cdot K})$
a. N ₂ H ₄ (g) + H ₂ (g) \rightarrow 2NH ₃ (g)	$N_2H_4(g)$	238.5
	$H_2(g)$	130.7
	NH3(g)	192.8
b. $2AI(s) + 3CI_2(g) \rightarrow 2AICI_3(s)$	AlCl ₃ (s)	109.3
	Cl2(g)	223.1
	Al(s)	28.3

[9] For a certain chemical reaction, $\Delta H^{\circ} = -35.4$ kJ and $\Delta S^{\circ} = -85.5$ J/K.

a. Is the reaction endothermic or exothermic?	
b. Does the reaction lead to an increase or decrease in the disorder of the system?	
c. Calculate ΔG° for the reaction at 298 K.	
d. Is the reaction spontaneous at 298K under standard conditions?	

[10] a. Using data in Appendix Four, calculate ΔH° , ΔS° , and ΔG° at 298K for the reaction below.

$H_2(g) + F_2(g) \rightarrow 2HF(g)$				$\Delta H^{\circ} =$
				$\Delta S^{\circ} =$
				$\Delta G^{\circ} =$
		$\Delta S^{\circ} (J/mol \cdot K)$	$\Delta H^{o} (kJ/mol)$	∆G° (kJ/mol)
	H2(g)	130.7	0	
	F2(g)	202.8	0	
	HF(g)	173.8	-273.3	-275.4
b. Show that $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$				

[11] a. Using data from Appendix four, calculate the change in Gibbs free energy for the following reaction.

$2\text{NOCl}(g) \rightarrow 2\text{NO}(g) + \text{Cl}_2(g)$				$\Delta G^{\circ} =$
		ΔS° (J/mol·K)	ΔH° (kJ/mol)	ΔG° (kJ/mol)
	NOCl(g)	261.7	51.7	66.4
	NO(g)	210.8	91.3	87.6
	Cl ₂ (g)	2231	0	0
b. Is the reaction spontaneous under standard conditions? Explain.			YES	NO

[12] A particular reaction is spontaneous at 450 K. The enthalpy change for the reaction is +34.5 kJ. What can you conclude about the sign and magnitude of ΔS for the reaction?