Dougherty Valley HS AP Chemistry Thermodynamics – Extra Practice Free-Energy and Spontaneity

Name: Date: Period: Seat #:

Show all work. Complete the following on binder paper and BOX your final answers.

[1] Using enthalpies of formation (Appendix Four), calculate ΔH° for the following reaction at 25°C. Also calculate ΔS° for this reaction from standard entropies at 25°C. Use these values to calculate ΔG° for the reaction at this temperature.

$$2\text{CH}_3\text{OH}(l) + 3\text{O}_2(g) \rightarrow 2\text{CO}_2(g) + 4\text{H}_2\text{O}(l)$$

- [2] The free energy of formation of one mole of compound refers to a particular chemical equation. For each of the following, write that equation.
- [a] NaCl (s)
- [b] HCN (*l*)
- [c] SO₂ (g)
- [d] PH₃ (g)
- [3] Calculate the standard free energy of the following reactions at 25°C, using standard free energies of formation.

[a] CH₄ (g) + 2O₂ (g)
$$\rightarrow$$
 CO₂ (g) + 2H₂O(g)

[b]
$$CaCO_3(s) + 2H_+(aq) \rightarrow Ca_{2+}(aq) + H_2O(l) + CO_2(g)$$

$$\mathbf{Ca}_{2+} \begin{array}{c|ccc} & \Delta \mathbf{H}_{f}^{\circ} & \Delta \mathbf{G}_{f}^{\circ} & \Delta \mathbf{S}^{\circ} \\ \hline \mathbf{Ca}_{2+} & -542.96 & -533.04 & -55.2 \end{array}$$

- [4] On the basis of ΔG° for each of the following reactions, decided whether the reaction is spontaneous or non-spontaneous as written. Or, if you expect an equilibrium mixture with significant amounts of both reactants and products, say so.
- [a] $SO_2 + 2H_2S \rightarrow 3S + 2H_2O$
- $\Delta G^{\circ} = -91 \text{ kJ}$
- [b] $2H_2O_2 \rightarrow O_2 + 2H_2O$
- $\Delta G^{\circ} = -211 \text{ kJ}$
- [c] $HCOOH \rightarrow CO_2 + H_2$
- $\Delta G^{\circ} = 119 \text{ kJ}$
- $[d] \; I_2 + Br_2 \rightarrow 2IBr$
- $\Delta G^{\circ} = 7.5 \text{ kJ}$
- [e] $NH_4Cl \rightarrow NH_3 + HCl$
- $\Delta G^{\circ} = 92 \text{ kJ}$
- [5] Calculate ΔH° and ΔG° for the following reactions at 25°C, using thermodynamic data from your books Appendix; interpret the signs of ΔH° and ΔG° .
- [a] $Al_2O_3 + 2Fe \rightarrow Fe_2O_3 + 2Al (851 \text{ kJ}; 838 \text{ kJ})$
- [b] COCl₂ + H₂O \rightarrow CO₂ + 2HCl; [COCl₂: $\Delta H_f^{\circ} = -220$ KJ/mol and $\Delta G_f^{\circ} = -206$ KJ/mol] (-72 kJ; -142kJ)
- [6] Using enthalpies of formation (appendix four), calculate ΔH° for the following reactions at 25°C. Also calculate ΔS° for this reaction from standard entropies at 25 °C. Use these values to calculate ΔG° for the reaction at this temperature.

$$4HCN + 5O_2 \rightarrow 2H_2O + 4CO_2 + 2N_2$$

- [7] The free energy of formation of one mole of compound refers to a particular chemical equation. For each of the following, write that equation.
- [a] CaO(s)
- [b] CH₃NH₂ (g)
- [c] CS₂ (l)
- [d] P₄O₁₀ (s)
- [8] Calculate the standard free energy of the following reactions at 25 C, using standard free energies of formation from the appendix.
- [a] $C_2H_4(g) + O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$

 ΔH_f ΔG_f ΔS

[b] Na_2CO_3 (s) + H_+ (aq) $\rightarrow 2Na_+$ (aq)+ HCO_{3-} (aq)

[9] For each of the following reactions, state whether the reaction is spontaneous or non-spontaneous as written or is easily reversible (that is, is a mixture with significant amounts of reactants and products)

[a]
$$HCN + 2H_2 \rightarrow CH_3NH_2$$
 $\Delta G^{\circ} = -92 \text{ kJ}$
[b] $N_2 + O_2 \rightarrow 2NO$ $\Delta G^{\circ} = 173 \text{ kJ}$
[c] $2NO + 3H_2O \rightarrow 2NH_3 + \frac{5}{2}O_2$ $\Delta G^{\circ} = 479 \text{ kJ}$
[d] $H_2 + Cl_2 \rightarrow 2HCl$ $\Delta G^{\circ} = -191 \text{ kJ}$
[e] $H_2 + I_2 \rightarrow 2HI$ $\Delta G^{\circ} = 2.6 \text{ kJ}$

[10] Calculate ΔH° and ΔG° for the following reactions at 25°C, using thermodynamic data from Appendix; interpret the signs of ΔH° and ΔG° .

- [a] $2PbO + N_2 \rightarrow 2Pb + 2NO$
- [b] $CS_2 + 2H_2O \rightarrow CO_2 + 2H_2S$; CS_2 : $\Delta \mathbf{H}_f^{\circ} = 87.9$ kJ and $\Delta \mathbf{G}_f^{\circ} = 63.6$ kJ

[11] Give the expression for the thermodynamic equilibrium constant for each of the following reactions:

- [a] $CO(g) + H_2O(g) \rightarrow CO_2(g) + H_2(g)$
- [b] $Mg(OH)_2(s) \rightarrow Mg_{2+}(aq) + 2OH_{-}(aq)$
- [c] $2\text{Li}(s) + 2\text{H}_2\text{O}(l) \rightarrow 2\text{Li}_+(aq) + 2\text{OH}_-(aq) + \text{H}_2(g)$

[12] What is the standard free energy change ΔG° at 25°C for the following reaction? Obtain necessary information from the Appendix: (-190.6kJ, 2.5E-33)

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

What is the value of the thermodynamic equilibrium constant K?

[13] Calculate the standard free energy change and the equilibrium constant K_p for the following reaction at 25°C. See appendix four for data. (-142.2kJ, 8.3E₂₄) – From another source $CO(g) + 3H_2(g) \rightarrow CH_4(g) + H_2O(g)$

[16] Obtain the equilibrium constant K_c at 25° C from the free-energy change for the reaction:

[17] What is the standard free-energy change ΔG° at 25°C for the following reaction? Obtain necessary information from Appendix: $\mathbf{C}(\mathbf{graphite}) + \mathbf{O_2(g)} \rightarrow \mathbf{CO_2(g)}$ Calculate the value of the equilibrium constant K.

[18] Calculate the standard free energy change and the equilibrium constant K_P for the following reaction at 25°C. See appendix for data. $CO(g) + 2H_2(g) \rightarrow CH_3OH(g)$

[19] Calculate the equilibrium constant K_c at 25 C from the free-energy change for the reaction:

$$Zn(s) + Cu2+ \rightarrow Zn2+ + Cu(s)$$

$$Cu2+ 64.39 64.98 -98.7$$

$$Zn2+ -152.4 -147.21 -106.5$$