WORKSHEET #5

Name:	Date:	Period:	Seat #:
Show all work Complete the following of	n hinder peper and POV your final analys	*0	

Show all work. Complete the following on binder paper and BOX your final answers.

[1] Consider the decomposition of H2O2 (hydrogen peroxide) at 298 K and 1 atm pressure according to:

$2 \text{ H}_2\text{O}_2(\text{liq}) \rightarrow 2 \text{ H}_2\text{O}(\text{liq}) + \text{O}_2(\text{gas})$

Substance	$\Delta G_{f}^{\circ} \left(\frac{kJ}{mol}\right)$	$\Delta H_{f}^{\circ} \left(\frac{kJ}{mol}\right)$	$S^{\circ}(J/mol^{-1}K^{-1})$
H2O2 (<i>l</i>)	-120.2	-187.6	109.5
$H_2O(l)$	-237.0	-285.8	69.4
O2 (g)			205

Please find the

a) standard enthalpy of reaction

b) standard entropy of reaction.

[2] For the reaction in the previous question, please find the

a) standard (Gibbs) free energy of reaction

b) the value of the (thermodynamic) equilibrium constant at 298 K, 1 atm

[3] From the indicated standard enthalpies of formation given in kJ/mol, please calculate the standard enthalpy of reaction for: $NH_4Cl(s) \rightarrow NH_3(g) + HCl(g)$

-314.4 -46.0 -92.5

[4] Carbon monoxide in the atmosphere slowly converts to carbon dioxide at normal atmospheric temperatures according to:

 $CO(g) + \frac{1}{2}O_2(g) \Leftrightarrow CO_2(g)$

The standard enthalpy of reaction is -284 kJ and the standard entropy of reaction is -87 J/K. Estimate the temperature at which the equilibrium begins to favor the decomposition of CO₂. Assume that the enthalpy and the entropy of reaction are not affected by temperature

 $2 \text{ NH}_3 (g) \rightarrow \text{N}_2\text{H}_4 (\text{liq}) + \text{H}_2 (g)$

[6] Please calculate the standard (Gibbs) free energy of reaction for:

	2 NO(g) +	$O_2(g) \Leftrightarrow 2 NC$	D ₂ (g)
Substance	$\Delta G_{f}^{\circ} \left(\frac{kJ}{mol}\right)$	$\Delta H_f^\circ \left(\frac{kJ}{mol}\right)$	$S^{\circ}(J/mol^{-1}K^{-1})$
NO (g)	86.69	90.4	210.6
NO2 (g)	51.84	34.0	240.5
O2 (g)			205.0

[7] Calculate the entropy of vaporization of propane given that its enthalpy of vaporization is 16.9 kJ/mol at its normal boiling point of -42.1°C.

[8] Obtain the numerical value of the equilibrium constant (at 298K) for the following reaction:

	$CO_2(g) + H_2$	$O(liq) \Leftrightarrow H_2CC$	D3(aq)
Substance	$\Delta G_{f}^{\circ} \left(\frac{kJ}{mol}\right)$	$\Delta H_{f}^{\circ} \left(\frac{kJ}{mol}\right)$	$S^{\circ}(J/mol^{-1}K^{-1})$
$H_2CO_3(aq)$	-623	-700	187
$H_2O(liq)$	-237	-286	70
CO ₂ (gas)	-394	-394	213

[9] Please indicate if TRUE or FALSE (Explain why as well):

[9] Flease I	nucate if TRUE of FALSE (Explain why as wen).
	The entropy of a gas increases with increasing temperature
	The energy of a perfect crystal is zero at 0 K.
	Spontaneous processes always increase the entropy of the reacting system
	All spontaneous processes release heat to the surroundings
	An endothermic reaction is more likely to be spontaneous at high temperatures than at low temperatures
	The entropy of sugar decreases as it precipitates from an aqueous solution

[10] Ammonia gas a standard (Gibbs) free energy of formation equal to -16.367 kJ/mol

a) Find ΔG° for the reaction: N₂ (g) + 3 H₂ (g) \Leftrightarrow 2 NH₃ (g)

b) In which direction will this reaction proceed if a mixture of gases is made with: $P_{NH_3} = 1.00 \text{ atm } P_{H_2} = 0.50 \text{ atm } P_{N_2} = 0.50 \text{ atm}$

c) What pressure of hydrogen gas should be added to a mixture already containing 0.20 atm NH₃ and 0.50 atm N₂ if one does not want the amounts of NH₃ and N₂ to change?

ANSWERS:

1196.4 kJ; 125 J/K	2233.6 kJ; 8.85 x 1040
3. 175.9 kJ	4. 3260 K or 3300K
5133.2 J/K	669.7 kJ
7. 73.1 J/K	8. 4.0 x 10-2 (using ΔG_f° data); 3.1 x 10-2 (using ΔH_f° and S° data)
9. T F F F T T	1032.734 kJ; proceed to the right; 5.3x10-3 atm