Name: Period: Seat#:

1) For each system below, indicate whether ΔS and ΔH is a positive or negative value. Then indicate if the reaction is entropy driven, enthalpy driven, both or neither. Qualitative, you do not need to do calculations for this part.

a) NaCl $_{(s)}$ + H ₂ O $_{(l)}$ + heat \rightarrow NaCl $_{(aq)}$	b) $O_{2 (g)} + H_2O_{(1)} \longrightarrow O_{2 (aq)} + heat$	c) $CO_{2 (s)} + heat \rightarrow CO_{2 (g)}$
$\Delta S =$	$\Delta S =$	$\Delta S =$
$\Delta H =$	$\Delta H =$	$\Delta H =$
Driven?	Driven?	Driven?

Quantitative, do calculations for this part. Calculate the ΔH°_{rxn} , ΔS°_{rxn} , ΔG°_{rxn} , Then, indicate whether ΔH° , ΔS° , ΔG° are positive or negative values. Then indicate if the reaction is spontaneous or not. Then indicate if the reaction is entropy driven, enthalpy driven, both, or neither. Then calculate $\Delta S_{universe}$ to further show if the reaction is spontaneous or not, remember the entropy of the universe should be increasing for spontaneous reactions! *Hint* must solve for temperature first before you can find ΔS_{univ} !

Substance	ΔH° formation (kJ/mole)	ΔS° formation (J/mole°K)	ΔG° formation (kJ/mole)
$C_3H_8(l)$	-103.8	269.9	-23.5
$O_2(g)$	0	205.1	0
$CO_2(g)$	-393.5	213.7	-394.4
$H_2O(g)$	-241.8	188.8	-228.6
$TiO_2(s)$	-939.7	49.9	-884.5
TiCl ₄ (<i>l</i>)	-804.2	252.3	-737.2
C (s)	0	5.7	0
$\operatorname{Cl}_{2}\left(g\right)$	0	223.1	0

 $\Delta H^{\circ} = \Sigma \Delta H_{f}^{\circ} \ prod. - \Sigma \Delta H_{f}^{\circ} \ react. \qquad \Delta S^{\circ} = \Sigma \Delta S^{\circ} \ prod. - \Sigma \Delta S^{\circ} \ react. \qquad \Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} \qquad \Delta S_{universe} = \frac{-\Delta H}{T}$

```
a) C_3H_8(l) + 5 O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)
```

After calculations circle/highlight:

 ΔH° + or - ΔS° + or -

 ΔG° + or - Spontaneous /

"thermodynamically favorable":

Yes No

Driven:

Enthalpy Entropy Both Neither

 ΔS_{univ} + or -

6840 J/molK

b)
$$TiO_2(s) + C(s) + 2Cl_2(g) \rightarrow TiCl_4(l) + CO_2(g)$$

After calculations circle/highlight:

 ΔH° + or - ΔS° + or - ΔG° + or -

Spontaneous /

"thermodynamically favorable":

Yes No

Driven:

Enthalpy Entropy Both Neither

 ΔS_{univ} + or

847 J/molK