KINETICS

Quick Review

Kinetics

Kinetics – The area of chemistry that studies reaction rates and reaction mechanisms.

Reaction Rate - The speed of a chemical reaction

The rate of a reaction is a measure of how fast the reaction makes products or uses reactants.

The ability to control the speed of a chemical reaction is important.

Defining Rate

Rate is how much a quantity changes in a given period of time.

• The speed you drive your car is a rate—the distance your car travels (miles) in a given period of time (1 hour).

So, the rate of your car has units of mi/hr.

Rate =
$$-\frac{\Delta[I_2]}{\Delta t}$$

Defining Reaction

The rate of a chemical reaction is generally measured in terms of how much the concentration of a reactant decreases (or product concentration increases) in a given period of time.

For reactants, a negative sign is placed in front of the definition.

Rate =
$$-\frac{\Delta[H_2]}{\Delta t} = -\frac{[H_2]_{t_2} - [H_2]_{t_1}}{t_2 - t_1}$$

Reaction Rates:

- 1. Can measure disappearance of reactants
- 2. Can measure appearance of products
- 3. Are proportional stoichiometrically

Reaction Rates:

4. Are equal to the slope tangent to that point

5. Change as the reaction proceeds, if the rate is dependent upon concentration

 $\frac{\Delta[NO_2]}{\Delta t} \neq \text{constant}$

Reactant and Product []s as a Function of Time

Reaction Rate and Stoichiometry

• In most reactions, the coefficients of the balanced equation are not all the same.

$$H_{2(g)} + I_{2(g)} \rightarrow 2 HI_{(g)}$$

Reaction Rate and Stoichiometry

 $\mathsf{H}_{2\,(g)} + \mathsf{I}_{2\,(g)} \rightarrow 2\,\mathsf{HI}_{(g)}$

For these reactions, the change in the number of molecules of one substance is a multiple of the change in the number of molecules of another.

- For the above reaction, for every 1 mole of H_2 used, 1 mole of I_2 will also be used and 2 moles of HI made.
- Therefore, the rate of change will be different.

Reaction Rate and Stoichiometry

• To be consistent, the change in the concentration of each substance is multiplied by $\frac{1}{coefficient}$

Average Rate vs. Instantaneous Rate

Average Rate - the change in measured concentrations in any particular time period.

- Linear approximation of a curve
- The larger the time interval, the more the average rate deviates from the instantaneous rate.

Average Rate vs. Instantaneous Rate

Instantaneous Rate - the change in concentration at any one specific, particular time.

- Slope at one point of a curve
- Found by taking the slope of a line tangent to the curve at that particular point.

»First derivative of the function (for all of you calculus fans)

Using $[H_2]$, the instantaneous rate at 50 s is as follows: $Rate = -\frac{-0.28 \, M}{40 \, s}$ Rate = $0.0070 \frac{M}{2}$ Using [HI], the instantaneous rate

instantaneous rate at 50 s is as follows: $Rate = \left(\frac{1}{2}\right) \frac{0.56 \text{ M}}{40 \text{ s}}$ $Rate = 0.0070 \frac{\text{M}}{\text{s}}$

Nature of the Reactants - what kind of reactant molecules and what physical condition they are in.

- Small molecules tend to react faster than large molecules.
- Gases tend to react faster than liquids, which react faster than solids.

Nature of the Reactants - what kind of reactant molecules and what physical condition they are in.

- Powdered solids are more reactive than "blocks."
 - More surface area for contact with other reactants
- Certain types of chemicals are more reactive than others.
 For example, K is more reactive than Na
- lons react faster than molecules.
 - No bonds need to be broken.

Temperature - Increasing temp increases the reaction rate.

Chemist's rule - for each 10 °C rise in temperature, the speed of the reaction doubles.

• Just an approximation, doesn't always work.

There is a mathematical relationship between the absolute temperature and the speed of a reaction discovered by Svante Arrhenius, which will be examined later.

Catalysts - substances that affect the speed of a reaction without being consumed.

Positive Catalysts – Most common kind, used to speed up a reaction **Negative Catalysts** - Used to slow a reaction, also called inhibitors.

Homogeneous - present in same phase Heterogeneous - present in different phase

Reactant Concentration –

• Generally, the larger the concentration of reactant molecules, the faster the reaction.

-This increases the frequency of reactant molecules colliding with each other.

Concentration of gases depends on the partial pressure of the gases.

– Higher pressure = higher concentration

• Concentrations of solutions depend on the solute-to-solution ratio (molarity).