KINETICS

Collision Theory and More

<u>Reaction Mechanism</u> - The series of elementary steps by which a chemical reaction occurs.

Collision Model

Key Idea: Molecules must collide to react. However, only a small fraction of collisions produces a reaction. Why?

Collision Model

Collisions must have <u>sufficient energy</u> to produce the reaction (must equal or exceed the activation energy).

Colliding particles must be <u>correctly oriented</u> to one another in order to produce a reaction.

Molecularity

The # of species that must collide to produce the rxn indicated by that step

- Unimolecular step a reaction involving one molecule
- Bimolecular step reaction involving the collisions of two species
- Termolecular step reaction involving the collisions of three species

Elementary Step	Molecularity	Rate Law
$A \rightarrow \text{products}$	Unimolecular	Rate = k[A]
$ \begin{array}{c} A + A \to products \\ (2A \to products) \end{array} $	Bimolecular	Rate = k[A] ²
$A + B \rightarrow \text{products}$		Rate = k[A][B]
$A + A + B \rightarrow \text{products}$ (2A + B \rightarrow products)	Termolecular	Rate = $k[A]^2[B]$
$A + B + C \rightarrow \text{products}$		Rate = k[A][B][C]

Effective Collisions: Kinetic Energy Factor

For a collision to lead to overcoming the energy barrier, the reacting molecules must have sufficient kinetic energy so that when they collide the activated complex can form.

Effective Collisions: Orientation Factor

<u>Molecular Interpretation of Factors</u> <u>Affecting the Rate – Reactant Nature</u>

- Reactions generally occur faster in solution than in pure substances.
 - -Mixing gives more particle contact.
 - Particles are separated, allowing more effective collisions per second.
 - -Forming some solutions breaks bonds that need to be broken.

Molecular Interpretation of Factors

<u>Affecting the Rate – Reactant Nature</u>

Some materials undergo similar reactions at different rates either because they have a

- 1) Higher initial potential energy and are therefore closer in energy to the activated complex, or
- 2) Because their reaction has a lower activation energy.

 $CH_4 + CI_2 \rightarrow CH_3CI + HCI$ is about 12 times faster than $CD_4 + CI_2 \rightarrow CD_3CI + DCI$ because the C—H bond is weaker and less stable than the C—D bond.

 $CH_4 + X_2 \rightarrow CH_3X + HX$ occurs about 100x faster with F_2 than CI_2 because the A_E for F_2 is 5 kJ/mol, but for CI_2 is 17 kJ/mol.

Molecular Interpretation of Factors Affecting the Rate – Concentration

- Reaction rate generally increases as the concentration or partial pressure of reactant molecules increases.
 - -Except for zero order reactions
- More molecules leads to more molecules with sufficient kinetic energy for effective collision.
 - -Distribution the same, just bigger curve

Molecular Interpretation of Factors Affecting the Rate – Temperature

- Increasing the temperature raises the average kinetic energy of the reactant molecules.
- There is a minimum amount of kinetic energy needed for the collision to be converted into enough potential energy to form the activated complex.
- Increasing the temperature increases the number of molecules with sufficient kinetic energy to overcome the activation energy.

Effect of Temperature on Rate

- Changing the temperature changes the rate constant of the rate law.
- Svante Arrhenius investigated this relationship and showed the following:

$$\boldsymbol{k} = \boldsymbol{A} \left(\boldsymbol{e} \frac{-\boldsymbol{E}_{\boldsymbol{a}}}{\boldsymbol{R}\boldsymbol{T}} \right)$$

T is the temperature in kelvins.

R is the gas constant in energy units, 8.314 J/(mol \cdot K).

A is called the frequency factor, the rate the reactant energy approaches the Ea

 E_a is the activation energy, the extra energy needed to start the molecules reacting.

The Arrhenius Equation Rearranged

$$\ln(k) = -\frac{E_a}{R} \left(\frac{1}{T}\right) + \ln(A)$$

- Simplifies solving for *E_a*
- $-E_a/R$ is the slope when graphing $\ln(k)$ vs. (1/T)
- In(A) is the y-intercept
- $E_a = -R(slope)$
- Graphing ln(k) vs (1/T) and taking line of best fit can quickly yield a slope

Arrhenius Equation – Exponential Factor

• The exponential factor in the Arrhenius equation is a number between 0 and 1.

$$\boldsymbol{k} = \boldsymbol{A} \left(\boldsymbol{e}^{\frac{-\boldsymbol{E}_{\boldsymbol{a}}}{\boldsymbol{R}\boldsymbol{T}}} \right)$$

- Represents the fraction of reactant molecules with sufficient energy so they can make it over the energy barrier.
 - The higher the energy barrier (larger E_A), the fewer molecules that have sufficient energy to overcome it.
- That extra energy comes from converting the kinetic energy of motion to potential energy in the molecule when the molecules collide.
 - Increasing the temp increases the average kinetic energy of the molecules.
 - Therefore, increasing the temp will increase the number of molecules with sufficient energy to overcome the energy barrier.
 - Therefore, increasing the temperature will increase the reaction rate.

Arrhenius Equation – Two Point Format

If you only have two (T, k) data points, the following form of the Arrhenius equation can be used:

$$\ln\!\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R}\!\left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

Activation Energy

 $2 \operatorname{H}_2(g) + \operatorname{O}_2(g) \Longrightarrow 2 \operatorname{H}_2\operatorname{O}(g)$

Reaction progress

Thermal Energy Distribution

As temperature increases, the fraction of molecules with enough energy to surmount the activation energy barrier also increases.

Energy

Catalysts

Catalyst - A substance that speeds up a reaction without being consumed during the reaction.

Enzyme - A large molecule (usually a protein) that catalyzes biological reactions.

Homogeneous catalyst - Present in the same phase as the reacting molecules.

Heterogeneous catalyst - Present in a different phase than the reacting molecules.

Types of Catalysts

Catalysts

- Catalysts work by providing an alternative mechanism for the reaction with a lower activation energy.
- Catalysts are consumed in an early mechanism step, and then re-made in a later step.

Mechanism without catalyst:

 $O_{3(g)} + O_{(g)} \rightarrow 2 O_{2(g)}$ V. Slow

Mechanism with catalyst:

$$CI_{(g)} + O_{3(g)} \Leftrightarrow O_{2(g)} + CIO_{(g)}$$
 Fast

$$CIO_{(g)} + O_{(g)} \rightarrow O_{2(g)} + CI_{(g)}$$
 Slow

<u>Molecular Interpretation of Factors</u> <u>Affecting the Rate – Catalysts</u>

Give reactant molecules a different path to follow w/ lower E_A .

- Heterogeneous catalysts hold one reactant molecule in proper orientation for reaction to occur when the collision takes place.
 - Sometimes they also help to start breaking bonds.
- Homogeneous catalysts react with one of the reactant molecules to form a more stable activated complex with a lower activation energy.

Lowering of E_A by a Catalyst

Energy Profile of a Catalyzed Reaction

Polar stratospheric clouds contain ice crystals that catalyze reactions that release Chlorine from atmospheric chemicals. Energy Diagram for Catalyzed and Uncatalyzed Pathways

Reaction progress

Catalysts Increase the # of Effective Collisions

Step #1:

Adsorption and activation of the reactants.

Carbon monoxide and nitrogen monoxide adsorbed on a platinum surface

Step #2:

Migration of the adsorbed reactants on the surface.

Carbon monoxide and nitrogen monoxide arranged prior to reacting

Step #3: Reaction of the adsorbed substances.

Carbon dioxide and nitrogen form from previous molecules

Step #4: Escape, or desorption, of the products.

Carbon dioxide and nitrogen gases escape (desorb) from the platinum surface Platinum