Name: Date: Period: Seat #:

Show all work. Complete the following.

- [1] The catalytic converter in an automobile uses NiO and Pt metal to speed the combustion of CO to CO2. This is an example of:
- a) homogeneous catalysis
- b) heterogeneous catalysis
- c) acid hydrolysis
- d) enzyme catalysis
- [2] The decomposition of N₂O₅(g) \rightarrow NO₂ (g) + NO₃ (g) proceeds as a first order reaction with a half-life of 30.0 seconds at a certain temperature. If the initial concentration [N₂O₅]₀ = 0.400 M, what is the concentration after 120 seconds?

a) 0.000 M

- b) 0.100 M
- c) 0.025 M
- d) 0.200 M
- e) 0.050 M
- [3] What is the rate constant of the reaction in Problem #2?
- a) 2.31 x 10-2 s-1
- b) 30.0 s-1
- c) 20.7 s-1
- d) 43.3 s-1
- [4] Which equation below best gives the concentration of N₂O₅ versus time in Problem #2?

a)
$$[N_2O_5] = \frac{[N_2O_5]_0}{t_{1/2}}$$

$$b) [N_2 O_5] = kt$$

c)
$$[N_2O_5] = [N_2O_5]_0 e^{-kt}$$

$$d) \ \frac{1}{[N_2 O_5]} = \frac{1}{[N_2 O_5]_0} + kt$$

- [5] Radioactive isotope concentrations typically decay by:
- a) no simple order
- b) zero order kinetics
- c) second order kinetics
- d) first order kinetics
- [6] The collision theory of reaction rates:
- I. helps to expose how temperature affects the rate.
- II. assumes that the rate depends on the frequency at which reactants collide
- III. assumes that reactants must be in correct orientation to react
- IV. assumes that only collisions with energy above the activation energy are successful
- a) I, II, and III are correct. IV is incorrect.
- b) I, III, and IV are correct. II is incorrect
- c) II, III, and IV are correct. I is incorrect
- d) All are correct statements

[7] The relationship between the rate constant and temperature is expressed by
--

- a) Arrhenius equation
- b) rate law
- c) integrated rate equation
- d) reaction mechanism

[8] Identify the **INCORRECT** statement below:

- a) The rate of a typical reaction doubles with a 10° C rise in temperature.
- b) The overall rate of reaction is determined by the rate of the fastest elementary step
- c) The reaction mechanism is a step-by-step pathway by which reaction occurs
- d) The reaction mechanism is typically a series of elementary reaction steps
- e) Reaction orders for a single elementary step are equal to the balancing coefficients for that step
- [9] Calculator problem Cyclopropane rearranges to form propene:

CH₂CH₂CH₂ → CH₂=CHCH₃

by first-order kinetics. The rate constant is $k = 2.74 \times 10-3 \text{ s}_{-1}$. The initial concentration of cyclopropane is 0.290 M. What will be the concentration of cyclopropane after 100 seconds?

a) 0.220 M	Show work:
b) 0.760 M	
c) 2.74 x 10-1 M	
d) 7.94 x 10-2 M	

[10] For the reaction given below, what is the instantaneous rate for each of the reactants and products?

 $3 A + 2 B \rightarrow 4 C$

[11] Given the following experimental data, find the rate law and the rate constant for the reaction:

$$NO(g) + NO_2(g) + O_2(g) \rightarrow N_2O_5(g)$$

Run	[NO]0, M	$[NO_2]_0$, M	$[O_2]_0$, M	Initial Rate, Ms-1
1	0.10	0.10	0.10	2.1E-2
2	0.20	0.10	0.10	4.2E-2
3	0.20	0.30	0.20	1.26E-1
4	0.10	0.10	0.20	2.1E-2

[12] The half-life of a radioisotope is found to be 4.55 minutes. If the decay follows first order kinetics, what percentage of isotope will remain after 2.00 hours?

The mechanism of a reaction is shown below.

 $HOOH + I^- \rightarrow HOI + OH^-$ (slow)

 $HOI + I^- \rightarrow I_2 + OH^-$ (fast)

 $2OH^- + 2H_3O_+ \rightarrow 4 H_2O$ (fast)

- a) What is the overall reaction?
- b) Which compounds are intermediates?
- c) Predict the rate law based on this mechanism
- d) What is the overall order of the reaction?

[14] For the reaction A + B \rightarrow C, the rate constant at 215_oC is 5.0 x10₋₃ and the rate constant at 452_oC is 1.2 x 10₋₁

a) What is the activation energy in kJ/mol?

b) What is the rate constant at 100_oC

 $ln\;(\frac{k_2}{k_1}) = \frac{E_A}{R}\;(\frac{1}{T_1} - \frac{1}{T_2})$

Answers [1-14]:

1)b 2)c 3)a 4)c 5)d 6)d 7)a 8)b 9)a

[10]
$$-\frac{1}{3}\frac{\Delta[A]}{\Delta t} = -\frac{1}{2}\frac{\Delta[B]}{\Delta t} = \frac{1}{4}\frac{\Delta[C]}{\Delta t}$$

[11] Rate = $k[NO][NO_2]$ k = $2.1 \, \text{M}^{-1} \text{s}^{-1}$

[12] $k = 0.152 \text{ min}^{-1}$ $A_t = 1.15 \times 10^{-6} \% \text{ (not much!!)}$

[13] a) Overall reaction: HOOH + $2 \stackrel{-}{l}$ + $2 \stackrel{-}{H_3}O^+$ \rightarrow l_2 + $4 \stackrel{-}{H_2}O$

b) Intermediates: OH and HOI

c) Predicted mechanism: Rate = k [HOOH][I]

d) Overall order: 2nd order

[14] a) 39.4 kJ/mol b) 2.50 x 10⁻⁴ s⁻¹