WORKSHEET #8

2008

Nitrogen monoxide gas, a product of the reaction above, can react with oxygen to produce nitrogen dioxide gas, as represented below.

$$2 \text{ NO}(g) + O_2(g) \rightarrow 2 \text{ NO}_2(g)$$

A rate study of the reaction yielded the data recorded in the table below.

Experiment	Initial Concentration of NO (mol L ⁻¹)	Initial Concentration of O ₂ (mol L ⁻¹)	Initial Rate of Formation of NO ₂ (mol L ⁻¹ s ⁻¹)
1	0.0200	0.0300	8.52×10^{-2}
2	0.0200	0.0900	2.56×10^{-1}
3	0.0600	0.0300	7.67×10^{-1}

- (d) Determine the order of the reaction with respect to each of the following reactants. Give details of your reasoning, clearly explaining or showing how you arrived at your answers.
 - (i) NO
 - (ii) O₂
- (e) Write the expression for the rate law for the reaction as determined from the experimental data.
- (f) Determine the value of the rate constant for the reaction, clearly indicating the units.

2008B

$$\mathrm{A}(g) + \mathrm{B}(g) \ \to \ \mathrm{C}(g) + \mathrm{D}(g)$$

2. For the gas-phase reaction represented above, the following experimental data were obtained.

Experiment	Initial [A] (mol L ⁻¹)	Initial [B] (mol L ⁻¹)	Initial Reaction Rate (mol L ⁻¹ s ⁻¹)
1	0.033	0.034	6.67 × 10 ⁻⁴
2	0.034	0.137	1.08×10^{-2}
3	0.136	0.136	1.07×10^{-2}
4	0.202	0.233	?

- (a) Determine the order of the reaction with respect to reactant A. Justify your answer.
- (b) Determine the order of the reaction with respect to reactant B. Justify your answer.
- (c) Write the rate law for the overall reaction.
- (d) Determine the value of the rate constant, k, for the reaction. Include units with your answer.
- (e) Calculate the initial reaction rate for experiment 4.
- (f) The following mechanism has been proposed for the reaction.

Step 1: $B + B \rightarrow E + D$ slow

Step 2: $E + A \rightleftharpoons B + C$ fast equilibrium

Provide two reasons why the mechanism is acceptable.

(g) In the mechanism in part (f), is species E a catalyst, or is it an intermediate? Justify your answer.

1999B

$2 \text{ NO}(g) + \text{Br}_2(g) \rightarrow 2 \text{ NOBr}(g)$

 A rate study of the reaction represented above was conducted at 25°C. The data that were obtained are shown in the table below.

Experiment	Initial [NO] (mol L ⁻¹)	Initial [Br ₂] (mol L ⁻¹)	Initial Rate of Appearance of NOBr (mol L ⁻¹ s ⁻¹)
1	0.0160	0.0120	3.24×10^{-4}
2	0.0160	0.0240	6.38×10^{-4}
3	0.0320	0.0060	6.42×10^{-4}

- (a) Calculate the initial rate of disappearance of $Br_2(g)$ in experiment 1.
- (b) Determine the order of the reaction with respect to each reactant, $Br_2(g)$ and NO(g). In each case, explain your reasoning.
- (c) For the reaction,
 - (i) write the rate law that is consistent with the data, and
 - (ii) calculate the value of the specific rate constant, k, and specify units.
- (d) The following mechanism was proposed for the reaction:

$$Br_2(g) + NO(g) \rightarrow NOBr_2(g)$$
 slow

$$NOBr_2(g) + NO(g) \rightarrow 2 NOBr(g)$$
 fast

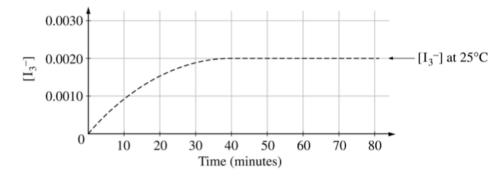
Is this mechanism consistent with the given experimental observations? Justify your answer.

2003

$$5 \text{ Br}^-(aq) + \text{BrO}_3^-(aq) + 6 \text{ H}^+(aq) \rightarrow 3 \text{ Br}_2(l) + 3 \text{ H}_2O(l)$$

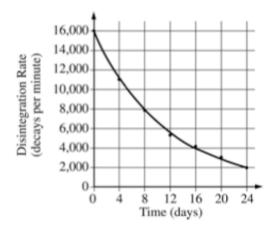
3. In a study of the kinetics of the reaction represented above, the following data were obtained at 298 K.

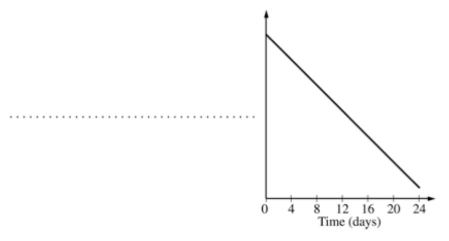
Experiment	Initial [Br ⁻] (mol L ⁻¹)	Initial $[BrO_3^-]$ $(mol L^{-1})$	Initial [H ⁺] (mol L ⁻¹)	Rate of Disappearance of BrO ₃ ⁻ (mol L ⁻¹ s ⁻¹)
1	0.00100	0.00500	0.100	2.50×10^{-4}
2	0.00200	0.00500	0.100	5.00×10^{-4}
3	0.00100	0.00750	0.100	3.75×10^{-4}
4	0.00100	0.01500	0.200	3.00×10^{-3}


- (a) From the data given above, determine the order of the reaction for each reactant listed below. Show your reasoning.
 - (i) Br-
 - (ii) BrO₃
 - (iii) H+
- (b) Write the rate law for the overall reaction.
- (c) Determine the value of the specific rate constant for the reaction at 298 K. Include the correct units.

$$3 I^{-}(aq) + S_2 O_8^{\ 2^{-}}(aq) \rightarrow I_3^{\ -}(aq) + 2 SO_4^{\ 2^{-}}(aq)$$

- 6. Iodide ion, $I^-(aq)$, reacts with peroxydisulfate ion, $S_2O_8^{2-}(aq)$, according to the equation above. Assume that the reaction goes to completion.
 - (a) Identify the type of reaction (combustion, disproportionation, neutralization, oxidation-reduction, precipitation, etc.) represented by the equation above. Also, give the formula of another substance that could convert I⁻(aq) to I₃⁻(aq).
 - (b) In an experiment, equal volumes of $0.0120 \, M \, \text{I}^-(aq)$ and $0.0040 \, M \, \text{S}_2\text{O}_8^{\, 2-}(aq)$ are mixed at 25°C. The concentration of $\text{I}_3^-(aq)$ over the following 80 minutes is shown in the graph below.

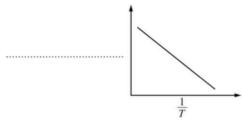

- (i) Indicate the time at which the reaction first reaches completion by marking an "X" on the curve above at the point that corresponds to this time. Explain your reasoning.
- (ii) Explain how to determine the instantaneous rate of formation of $I_3^-(aq)$ at exactly 20 minutes. Draw on the graph above as part of your explanation.
- (c) Describe how to change the conditions of the experiment in part (b) to determine the order of the reaction with respect to $I^{-}(aq)$ and with respect to $S_2O_8^{-2-}(aq)$.
- (d) State clearly how to use the information from the results of the experiments in part (c) to determine the value of the rate constant, k, for the reaction.
- (e) On the graph below (which shows the results of the initial experiment as a dashed curve), draw in a curve for the results you would predict if the initial experiment were to be carried out at 35°C rather than at 25°C.


2003B

- 8. The decay of the radioisotope I-131 was studied in a laboratory. I-131 is known to decay by beta $\begin{pmatrix} 0 \\ -1 \end{pmatrix} e$ emission.
 - (a) Write a balanced nuclear equation for the decay of I-131.
 - (b) What is the source of the beta particle emitted from the nucleus?

The radioactivity of a sample of I-131 was measured. The data collected are plotted on the graph below.

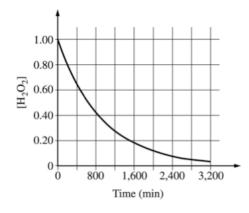
- (c) Determine the half-life, t_{1/2}, of I-131 using the graph above.
- (d) The data can be used to show that the decay of I-131 is a first-order reaction, as indicated on the graph below.

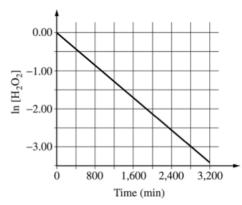

- (i) Label the vertical axis of the graph above.
- (ii) What are the units of the rate constant, k, for the decay reaction?
- (iii) Explain how the half-life of I-131 can be calculated using the slope of the line plotted on the graph.
- (e) Compare the value of the half-life of I-131 at 25°C to its value at 50°C.

2004

3. The first-order decomposition of a colored chemical species, X, into colorless products is monitored with a spectrophotometer by measuring changes in absorbance over time. Species X has a molar absorptivity constant of 5.00 × 10³ cm⁻¹ M⁻¹ and the path length of the cuvette containing the reaction mixture is 1.00 cm. The data from the experiment are given in the table below.

[X] (M)	Absorbance	Time (min)
?	0.600	0.0
4.00×10^{-5}	0.200	35.0
3.00×10^{-5}	0.150	44.2
1.50×10^{-5}	0.075	?


- (a) Calculate the initial concentration of the colored species.
- (b) Calculate the rate constant for the first-order reaction using the values given for concentration and time. Include units with your answer.
- (c) Calculate the number of minutes it takes for the absorbance to drop from 0.600 to 0.075.
- (d) Calculate the half-life of the reaction. Include units with your answer.
- (e) Experiments were performed to determine the value of the rate constant for this reaction at various temperatures. Data from these experiments were used to produce the graph below, where T is temperature. This graph can be used to determine the activation energy, E_a , of the reaction.
 - (i) Label the vertical axis of the graph.
 - (ii) Explain how to calculate the activation energy from this graph.



$$2 H2O2(aq) \rightarrow 2 H2O(l) + O2(g)$$

2004B

- 3. Hydrogen peroxide decomposes according to the equation above.
 - (a) An aqueous solution of H₂O₂ that is 6.00 percent H₂O₂ by mass has a density of 1.03 g mL⁻¹. Calculate each of the following.
 - (i) The original number of moles of H₂O₂ in a 125 mL sample of the 6.00 percent H₂O₂ solution
 - (ii) The number of moles of $O_2(g)$ that are produced when all of the H_2O_2 in the 125 mL sample decomposes
 - (b) The graphs below show results from a study of the decomposition of $\rm\,H_2O_2$.

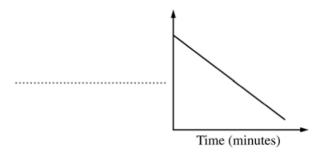
- (i) Write the rate law for the reaction. Justify your answer.
- (ii) Determine the half-life of the reaction.
- (iii) Calculate the value of the rate constant, k. Include appropriate units in your answer.
- (iv) Determine [H₂O₂] after 2,000 minutes elapse from the time the reaction began.

$I^{-}(aq) + ClO^{-}(aq) \xrightarrow{OH} IO^{-}(aq) + Cl^{-}(aq)$

Iodide ion, I-, is oxidized to hypoiodite ion, IO-, by hypochlorite, ClO-, in basic solution according to the equation above. Three initial-rate experiments were conducted; the results are shown in the following table.

Experiment	[I ⁻] (mol L ⁻¹)	[ClO ⁻] (mol L ⁻¹)	Initial Rate of Formation of IO ⁻ (mol L ⁻¹ s ⁻¹)
1	0.017	0.015	0.156
2	0.052	0.015	0.476
3	0.016	0.061	0.596

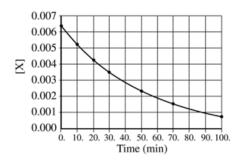
- (a) Determine the order of the reaction with respect to each reactant listed below. Show your work.
 - (i) I-(aq)
 - (ii) ClO (aq)
- (b) For the reaction,
 - (i) write the rate law that is consistent with the calculations in part (a);
 - (ii) calculate the value of the specific rate constant, k, and specify units.

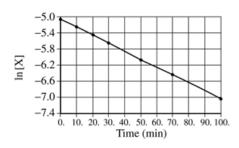

The catalyzed decomposition of hydrogen peroxide, $H_2O_2(aq)$, is represented by the following equation.

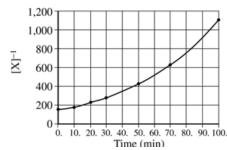
$$2 \; \mathrm{H_2O_2}(aq) \quad \xrightarrow{\mathrm{catalyst}} \quad 2 \; \mathrm{H_2O}(l) \; + \; \mathrm{O_2}(g)$$

The kinetics of the decomposition reaction were studied and the analysis of the results show that it is a first-order reaction. Some of the experimental data are shown in the table below.

$[H_2O_2]$	Time	
(mol L-1)	(minutes)	
1.00	0.0	
0.78	5.0	
0.61	10.0	

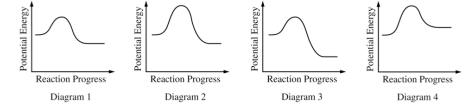

(c) During the analysis of the data, the graph below was produced.




- (i) Label the vertical axis of the graph.
- (ii) What are the units of the rate constant, k, for the decomposition of $H_2O_2(aq)$?
- (iii) On the graph, draw the line that represents the plot of the uncatalyzed first-order decomposition of $1.00 M H_2O_2(aq)$.

3. The decomposition of gas X to produce gases Y and Z is represented by the equation above. In a certain experiment, the reaction took place in a 5.00 L flask at 428 K. Data from this experiment were used to produce the information in the table below, which is plotted in the graphs that follow.

Time (minutes)	[X] (mol L ⁻¹)	ln [X]	[X] ⁻¹ (L mol ⁻¹)
0	0.00633	-5.062	158
10.	0.00520	-5.259	192
20.	0.00427	-5.456	234
30.	0.00349	-5.658	287
50.	0.00236	-6.049	424
70.	0.00160	-6.438	625
100.	0.000900	-7.013	1,110



- (a) How many moles of X were initially in the flask?
- (b) How many molecules of Y were produced in the first 20. minutes of the reaction?
- (c) What is the order of this reaction with respect to X? Justify your answer.
- (d) Write the rate law for this reaction.
- (e) Calculate the specific rate constant for this reaction. Specify units.
- (f) Calculate the concentration of X in the flask after a total of 150. minutes of reaction.

2006

(d) Consider the four reaction-energy profile diagrams shown below.

- Identify the two diagrams that could represent a catalyzed and an uncatalyzed reaction pathway for the same reaction. Indicate which of the two diagrams represents the catalyzed reaction pathway for the reaction.
- (ii) Indicate whether you agree or disagree with the statement in the box below. Support your answer with a short explanation.

Adding a catalyst to a reaction mixture adds energy that causes the reaction to proceed more quickly.