Name:		Date:	Period: Seat #:
 For the following three reactions, a) write the K_{eq} expression in terms of concentration, K_c. b) given the equilibrium concentrations, state whether coch equilibrium is product forward reactort forward 			What is the concentration (\underline{M}) of water in water?
or fairly ev	ibrium is product-favored, reactant-favored, ven ([products] \approx [reactants]). he value of K _c .	,	At this temperature, can you get more moles of water into this Liter of water?
1. N ₂ g) + 3 H	$H_2(g) \leftrightarrows 2 NH_3(g)$		The [H ₂ O] (is / is not) constant.
At equilib	prium: $[N_2] = 1.50 \underline{M}$ $[H_2] = 2.00 \underline{M}$ $[NH_3] = 0.01 \underline{M}$		Important Note: Since the concentrations of solids and liquids are constant, they are incorporated into the equilibrium constant, K _{eq} . That means, just leave them out of the K _c or K _p expression. Only include (g) and (aq)!
	$H^+(aq) + F(aq)$	5.	Write equilibrium expressions for each of the following reactions: a) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$
At equilib	prium: $[HF] = 0.55 \underline{M}$ $[H^+] = 0.001 \underline{M}$ $[F] = 0.001 \underline{M}$		b) $Ni(s) + 4CO(g) \rightleftharpoons Ni(CO)_4(g)$
3. $Fe^{3+}(aq) +$	SCN (aq) \leftrightarrows FeSCN ²⁺ (aq)		c) $5CO(g) + I_2O_5(s) \rightleftharpoons I_2(g) + 5CO_2(g)$
At equilib	prium: $[Fe^{3+}] = 0.55 \underline{M}$ $[SCN] = 0.001 \underline{M}$ $[FeSCN^{2+}] = 0.001 \underline{M}$		d) $Ca(HCO_3)_2(aq) \rightleftharpoons$ $CaCO_3(s) + H_2O(l) + CO_2(g)$
Summarize:			e) $AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl (aq)$
	ks with product-favored, reactant-favored,		
and approx	ximately equal state of equilibrium		
$K_c \gg 1$	state of equilibrium	_	

4. Knowing that pure water has a density of 1g/1mL calculate the mass of 1.00 Liter of water.

 $\frac{K_c << 1}{K_c \approx 1}$

Calculate the number of moles in 1.00 L of H_2O .

 Write the equilibrium expression in terms of partial pressures (K_p) for each of the following reactions. Rate the reactions in order of their increasing tendency to proceed toward completion:

(a) $4NH_3(g) + 3O_2(g) \rightleftharpoons 2N_2(g) + 6H_2O(g)$ $K_p = 1 \times 10^{228}$ atm

(b)
$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$
 $K_p = 5 \times 10^{-31}$

(c)
$$2HF(g) \rightleftharpoons H_2(g) + F_2(g)$$
 $K_p = 1 \times 10^{-13}$

(d)
$$2\text{NOCl}(g) \rightleftharpoons 2\text{NO}(g) + \text{Cl}_2(g)$$

 $K_p = 4.7 \text{ x } 10^{-4} \text{ atm}$

A Question That You Should Be Able To Answer: Why don't the K_p's in (b) and (c) have units?

7. (a) Write the K_c expression for $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \leftrightarrows 2 \operatorname{SO}_3(g)$

Calculate the value of K_c: At equilibrium:

 $[SO_2] = 1.50 M$ $[O_2] = 1.25 M$ $[SO_3] = 3.50 M$ (b) If we reverse the equation, it is: 2 SO₃(g) ≒ 2 SO₂(g) + O₂(g) Write the K_c expression for this equation and calculate the new value of K_c:

How does the expression and the value of K_c in 7(b) compare with those in 7(a)?

(c) If we now **multiply all of the coefficients by** $\frac{1}{2}$: SO₃(g) \leftrightarrows SO₂(g) + $\frac{1}{2}$ O₂(g) Write the K_c expression for this equation and calculate the new value of K_c:

How do they compare with 7(b)?

(d) What would happen to the K_c expression and its value if we **doubled** the coefficients?

Summarize:

Equation	K _c expression & Value		
doubled			
reversed			
halved			

8. Consider an equilibrium that occurs in two steps: $H_2S(aq) \leftrightarrows H^+(aq) + HS (aq)$ $\underline{HS} (aq) \leftrightarrows H^+(aq) + S^2 (aq)$

(a) Write the overall reaction.

(b) How do the K_c's for the two steps (K_{c1} & K_{c2}) relate to the K_c of the overall reaction (K_c)?