WORKSHEET #4

Name:	Date:	Period	l: Seat #:	
1.	Consider the equilibrium: $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \leftrightarrows 2 \operatorname{SO}_3(g)$	$K_c = 4.36 M^{-1}$		

Calculate the value of " \hat{Q} " for a situation in which the concentrations are $[SO_2] = 2.00 \text{ M}$, $[O_2] = 1.50 \text{ M}$, and $[SO_3] = 1.25 \text{ M}$.

Does this mixture shift toward the reactants or products to reach equilibrium?

2. Study the discussion in your textbook about converting K_c and K_p . Write the K_p expression for the reaction in question 1 and calculate its value at 0°C. Remember, $R = 0.0821 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$.

Consider the equilibrium PCl₃(g) + Cl₂(g) ⇒ PCl₅(g).
How would the following changes affect the partial pressures of each gas at equilibrium?
PCl₂(g) + Cl₂(g) ⇒ PCl₅(g).

		PC13(g)	$+ Cl_2(g) -$	-PCI5(g)
a)	addition of PCl ₃			
b)	removal of Cl ₂			
c)	removal of PCl ₅			
d)	decrease in the volume of the container			
e)	addition of He without change in volume			

4. How will each of the changes in question 3 affect the K_{eq} ? (\uparrow =increase; \downarrow =decrease; —= unchanged)

a ____ b ___ c ___ d ___ e ___

5. Indicate how each of the following changes affects the amount of each gas in the system below, for which $\Delta H_{reaction} = +9.9$ kcal.

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$

a)	addition of CO ₂	 	
b)	addition of H ₂ O	 	
c)	addition of a catalyst		
d)	increase in temperature	 	
e)	decrease in the volume of the container	 	
/		 	

6. How will each of the changes in question 5 affect the equilibrium constant?

a b c d e		0	1	1	
	а	b	с	d	e

7.	Consider the equilibrium: $2N_2O(g) + O_2(g) \rightleftharpoons 4NO(g)$
	How will the amount of chemicals at equilibrium be affected by
	$2N_2O(g) + O_2(g) \rightleftharpoons 4NO(g)$

a)	adding N ₂ O	 	
b)	removing O ₂	 	
c)	increasing the volume of the container	 	
d)	adding a catalyst	 	

8.	For the reaction, How will the concentration of each chemical be affected by	$4NH_3(g) + 3O_2(g) \rightleftharpoons 2N_2(g) + 6H_2O(l)$
	a) adding O ₂ to the system	
	b) adding N ₂ to the system	
	c) removing H ₂ O from the system	
	d) decreasing the volume of the container	

9. Consider the equilibrium: $2N_2O(g) + O_2(g) \rightleftharpoons 4NO(g)$

3.00 moles of NO(g) are introduced into a 1.00-Liter evacuated flask. When the system comes to equilibrium, 1.00 mole of N₂O(g) has formed. Determine the equilibrium concentrations of each substance. Calculate the K_c for the reaction based on these data.

	2 N ₂ O	O ₂	4 NO
initial			
change			
equilibrium			

Remember: The "ice" box may be used with moles, molarity, or Liters (for gaseous equilibria) ... never grams.