Atomic Structure

and Periodicity




Trend in Atomic Radius — Main Group

* There are several methods for measuring the
radius of an atom, and they give slightly
different numbers.

v Van der Waals radius = nonbonding

v' Covalent radius = bonding radius

v Atomic radius is an average radius of an atom based on
measuring large numbers of elements and compounds.
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Trend in Atomic Radius — Main Group

* Atomic radius decreases across period (left
to right)
v' Adding electrons to same valence shell

v' Effective nuclear charge increases
v' Valence shell held closer
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Trend in Atomic Radius — Main Group

* Atomic radius increases down group

v’ Valence shell farther from nucleus
v’ Effective nuclear charge fairly close
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Periodic Trends in Atomic Radius

Gallium (eka-aluminum) Germanium (eka-silicon)

Mendeleev’s
predicted Actual
properties properties

Mendeleev’s
predicted

properties
Atomic mass About 68 amu 69.72 amu Atomic mass About 72 amu
Melting point Low 29.8 °C Density 5.5 g/cm3
Density 5.9 g/cm’ 5.90 g/cm’ Formula of oxide XO,
Formula of oxide X,03 Ga,05 Formula of chloride XCly

Formula of chloride XCly GaCl;

Actual
properties

72.64 amu
5.35 g/cm®
GeO,
GeCly



Quantum-Mechanical Explanation for the
Group Trend in Atomic Radius

* The size of an atom Is
related to the distance the
valence electrons are
from the nucleus.



Quantum-Mechanical Explanation for the
Group Trend in Atomic Radius

* The larger the orbital an
electron is in, the farther its
most probable distance will be
from the nucleus, and the less
attraction it will have for the
nucleus.



Quantum-Mechanical Explanation for the
Group Trend in Atomic Radius

* Traversing down a
group adds a principal
energy level.



Quantum-Mechanical Explanation for the
Group Trend in Atomic Radius

* The larger the principal
energy level an orbital
IS In, the larger its
volume.



Quantum-Mechanical Explanation for the
Group Trend in Atomic Radius

* Quantum-mechanics
predicts the atoms
should get larger down
a column.



Quantum-Mechanical Explanation for the
Period Trend in Atomic Radius

* The larger the effective
nuclear charge an electron
experiences, the stronger the
attraction it will have for the

nucleus.



Quantum-Mechanical Explanation for the
Period Trend in Atomic Radius

* The stronger the attraction the
valence electrons have for the
nucleus, the closer their
average distance will be to the
nucleus.



Quantum-Mechanical Explanation for the
Period Trend in Atomic Radius

* Traversing across a
period increases the
effective nuclear charge
on the valence electrons.



Quantum-Mechanical Explanation for the
Period Trend in Atomic Radius

* Quantum-mechanics
predicts the atoms should
get smaller across a
period.



Trends in lonic Radius

Ions in the same group have the same charge.
Ton size increases down the column.
« Higher valence shell, larger

Cations are smaller than neutral atoms: anions
are larger than neutral atoms.

Cations are smaller than anions.

« Except Rb* and Cs* bigger or same size as
F- and O%-.

Larger positive charge = smaller cation

* For isoelectronic species

+ TIsoelectronic = same electron configuration

Larger negative charge = larger anion

* For isoelectronic species



Radii of Atoms and Their Cations (pm)

Group 1A Group 2A Group 3A
Li i Be Be’" B B**
Periodic G c ;
152 60 112 31 85 23
Trends _ s
in lonic O Q Q
»

a ' us 186 95 160 65 143 50
K K* Ca Ca*t ja Gat
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Rb ; Rb* Sr Sr2t In In®
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Radii of Atoms and Their Anions (pm)

Group 6A Group 7A
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lonization Energy (IE)

* Minimum energy needed to remove an
electron from an atom or ion
v Gas state
v'Endothermic process
v'Valence electron easiest to remove, lowest IE
vM(g) + IE; > M*(g) + 1 e
vMi(g) + IE;, > M*(g) + 1 e
»>First ionization energy = energy to
remove electron from neutral atom,

second IE = energy to remove from 1+
ion, etfc.



Tonization Energy: the energy required to
remove an electron from an atom

Increases for successive electrons taken from the

same atom
Tends to increase across a period

Electrons in the same quantum level do not shield as
effectively as electrons in inner levels, T protons, T

Energy required
Irregularities at half filled and filled sublevels due

to extra repulsion of electrons paired in orbitals,
making them easier to remove

Tends to decrease down a group
Outer electrons are farther from the

Nucleus, more shielding effect



First lonization Energies
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Trends in First lonization Energy

3A° 4A 5A 6A

Increasing ionization energy

7A

8A

DeC . - .
Teasing Ionization energy



Quantum-Mechanical Explanation for
the Trends in First lonization Energy

* The strength of attraction is
related to the most probable
distance the valence electrons
are from the nucleus and the
effective nuclear charge the
valence electrons experience.



Quantum-Mechanical Explanation for
the Trends in First lonization Energy

* The larger the orbital an
electron is in, the farther its
most probable distance will be
from the nucleus and the less
attraction it will have for the
nucleus.



Quantum-Mechanical Explanation for
the Trends in First lonization Energy

* Quantum-mechanics
predicts the atom’s first
lonization energy should
get lower down a column.



Quantum-Mechanical Explanation for
the Trends in First lonization Energy

 Traversing across a period
Increases the effective
nuclear charge on the
valence electrons.



Quantum-Mechanical Explanation for
the Trends in First lonization Energy

* Quantum-mechanics
predicts the atom’s first
lonization energy should
get larger across a period.



Trends in Second and Successive
lonization Energies

TABLE 8.1 Successive Values of lonization Energies for the Elements Sodium through Argon (kJ/mol)

Element IE, IE, IE; IE, IEs IEg IE;

Na 496 4560

Mg 738 1450 7730 Core electrons

Al 578 1820 2750 11,600

Si 786 1580 3230 4360 16,100

B 1012 1900 2910 4960 6270 22,200

S 1000 2250 3360 4560 7010 8500 27,100
Cl 1251 2300 3820 5160 6540 9460 11,000

Ar 1521 2670 3930 5770 7240 8780 12,000



Electron Affinity

* Energy is released when an neutral atom gains
an electron. CHANGE in ENERGY

v Gas state
v'M(g) + 1e- - M'~(g) + EA

* Electron affinity is defined as exothermic (-),
but may actually be endothermic (+).

v'Some alkali earth metals and all noble gases are
endothermic. Why?

* The more energy that is released, the larger the
electron affinity.
v The more negative the number, the larger the EA.



Trends in Electron Affinity

 Alkali metals decrease electron affinity down

the column.
— But not all groups do

— Generally irregular increase in EA from second period
to third period

» “Generally” increases across period
— Becomes more negative from left to right

— Not absolute

— Group 5A generally lower EA than expected because
extra electron must pair

— Groups 2A and 8A generally very low EA because
added electron goes into higher energy level or sublevel

» Highest EA in any period = halogen



Electron Affinities (kJ/mol)
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Table of Electron Affinities
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Electronegativit

* The ability of an atom to attract bonding
electrons to itself is called electronegativity.
* Increases across period (left to right) and
decreases down group (top to bottom)
— Fluorine is the most electronegative element.
— Francium is the least electronegative element.
— Noble gas atoms are not assigned values.
— Opposite of atomic size trend.
* The larger the difference in electronegativity,
the more polar the bond.
— Negative end toward more electronegative atom.



Trends in Electronegativity

Electronegativity Scale




Electronegativity Difference and Bond Type

* If the difference in electronegativity between
bonded atoms is O, the bond is pure covalent.

— Equal sharing

* If the difference in electronegativity between
bonded atoms is 0.1 to 0.4, the bond is
nonpolar covalent.

* If the difference in electronegativity between
bonded atoms is 0.5 to 1.9, the bond is
polar covalent.

* |f difference in electronegativity between
bonded atoms is larger than or equal to 2.0, the
bond i1s*100%"” ionic.



Summary of Periodic Trends
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Bond Polarity

TABLE 9.1 The Effect of Electronegativity Difference on Bond Type

Electronegativity Difference (AEN) Bond Type Example
Small (0-0.4) Covalent Cl,
Intermediate (0.4-2.0) Polar covalent HCI

Large (2.0+) lonic NaCl



Bond Dipole Moments

* Dipole moment, pu, is a measure of bond
polarity.
— A dipole is a material with a + and — end.

— it is directly proportional to the size of the partial
charges and directly proportional to the distance
between them.

* u=(q)r)
* Not Coulomb’s law
 Measured in Debyes, D

* Generally, the more electrons two atoms
share and the larger the atoms are, the larger
the dipole moment.




The Continuum of Bond Types

Pure (nonpolar) Polar [ _ j
[ covalent bond } [covalent bond} [onic bond

5

Electrons shared Electrons shared Electrons
equally unequally transferred
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Magnetic Properties of Transition Metal
Atoms and lons

» Electron configurations that
result in unpaired electrons
mean that the atom or ion will

have a net magnetic field; this
IS called paramagnetism.

—-WiIll be attracted to a
magnetic field



Magnetic Properties of Transition Metal
Atoms and lons

* Electron configurations that
result in all paired electrons
mean that the atom or ion will
have no magnetic field; this is
called diamagnetism.

—Slightly repelled by a
magnetic field



