<u>Bonding - General Concepts</u>

Coulomb's Law, Lattice Energy, Bond E

Electronegativity: The ability of an atom in a molecule to attract shared electrons to itself.

2.1	2	below 1.0			2.0-2.4				13	14	15	16	17			
Li 1.0	Be 1.5	1.0-1.4			2.5-2.9					В 2.0	C 2.5	N 3.0	O 3.5	F 4.0		
Na 0.9	Mg 1.2	3	4	5	6	7	8	9	10	11	12	Al 1.5	Si 1.8	Р 2.1	S 2.5	C1 3.0
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Тс 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5
Cs	Ba	La*	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At
0.8	0.9	1.1	1.3	1.5	2.4	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2
Fr	Ra	Ac ⁺ *Lanthanides: 1.1–1.3														

1.1

1

0.7

0.9

⁺Actinides: 1.3–1.5

<u>Ionic Bonds</u>

Electrons are transferred

Electronegativity differences are generally greater than 1.7
The formation of ionic bonds is always exothermic!

Determination of Ionic Character

Electronegativity difference is <u>not</u> the final determination of ionic character

Compounds are ionic if they conduct electricity in their molten state

Molten Sodium conducts electricity

Coulomb's Law

- Coulomb's law describes the attractions and repulsions between charged particles.
- For like charges, the potential energy (E) is positive and decreases as the particles get farther apart as r increases. r should be squared
- For opposite charges, the potential energy is negative and becomes more negative as the particles get closer together.
- The strength of the interaction increases as the size of the charges increases.
 - Electrons are more strongly attracted to a nucleus with a 2+ charge than a nucleus with a 1+ charge.

Sodium Chloride Crystal Lattice

Ionic compounds form solids at ordinary temperatures. Ionic compounds organize in a characteristic crystal lattice of alternating positive and negative ions.

Lattice Energy Steps

Lattice Energy cont...

Lattice energy can be represented by a modified form of Coulomb's Law: *k is a* proportionality constant that depends on the structure of the solid and the electron configurations of the ions. *k is not the rate constant from this point of view*

 $LatticeEnergy = k \left(\frac{Q_1 Q_2}{r} \right)$

Reminder: Q are the ion charges

E

Estimate ΔH_f for Sodium Chloride Na(s) + $\frac{1}{2}$ Cl₂(g) \rightarrow NaCl(s)

Lattice Energy	-786 kJ/mol
Ionization Energy for Na	495 kJ/mol
Electron Affinity for Cl	-349 kJ/mol
Bond energy of Cl ₂	239 kJ/mol
Enthalpy of sublimation for Na	109 kJ/mol

$$\begin{split} \mathsf{Na}(s) & \xrightarrow{} \mathsf{Na}(g) & +109 \text{ kJ} \\ \mathsf{Na}(g) & \xrightarrow{} \mathsf{Na}^{*}(g) + e^{-} & +495 \text{ kJ} \\ \frac{1}{2} \mathsf{Cl}_{2}(g) & \xrightarrow{} \mathsf{Cl}(g) & +\frac{1}{2}(239 \text{ kJ}) \\ \mathsf{Cl}(g) + e^{-} & \xrightarrow{} \mathsf{Cl}^{*}(g) & -349 \text{ kJ} \\ \mathsf{Na}^{*}(g) + \mathsf{Cl}^{*}(g) & \xrightarrow{} \mathsf{Na}\mathsf{Cl}(s) & -786 \text{ kJ} \end{split}$$

 $Na(s) + \frac{1}{2} Cl_2(g) \rightarrow NaCl(s)$

-412 kJ/mol

Polar-Covalent bonds

- Electrons are unequally shared
- Electronegativity difference between .3 and 1.7

Nonpolar-Covalent bonds

- Electrons are equally shared
- Electronegativity difference of 0 to 0.3

<u>Covalent Bonding Forces</u>

Attractive forces

Electron - proton attractive forces = good

Interaction Energy of Two Hydrogen Atoms

Bond Length and Energy

		Bond length	Bond Energy
Bond	Bond type	(pm)	(kJ/mol)
C - C	Single	154	347
C = C	Double	134	614
$C \equiv C$	Triple	120	839
C - O	Single	143	358
C = O	Double	123	745
C - N	Single	143	305
C = N	Double	138	615
$\mathcal{C} \equiv \mathbf{N}$	Triple	116	891

Bonds between elements become shorter and stronger as multiplicity increases.

Bond Energy and Enthalpy

