<u>Covalent Bonding</u>

Sigma and Pi Bonds

Types of Bonds

- A sigma (o) bond results when the interacting atomic orbitals point along the axis connecting the two bonding nuclei.
 - Either standard atomic orbitals or hybrids
 - *s* to *s*, *p* to *p*, hybrid to hybrid, *s* to hybrid, etc.
- A pi (π) bond results when the bonding atomic orbitals are parallel to each other and perpendicular to the axis connecting the two bonding nuclei.
 - Between unhybridized parallel *p* orbitals
- The interaction between parallel orbitals is not as strong as between orbitals that point at each other; therefore, σ bonds are stronger than π bonds.

Sigma and Pi Bonds

Sigma (σ) bonds exist in the region directly between two bonded atoms.

Pi (π) bonds exist in the region above and below a line drawn between two bonded atoms.

Single bond	1 sigma bond
Double Bond	1 sigma, 1 pi bond
Triple Bond	1 sigma, 2 pi bonds

Ethane

Orbital Diagrams of Bonding

- "Overlap" between a hybrid orbital on one atom with a hybrid or nonhybridized orbital on another atom results in a σ bond.
- "Overlap" between unhybridized p orbitals on bonded atoms results in a π bond.

Orbital Diagrams of Bonding cont.

Hybrid orbitals overlap to form a σ bond. Unhybridized *p* orbitals overlap to form a π bond.

The De-Localized Electron Model

Pi bonds (π) contribute to the <u>delocalized model</u> of electrons in bonding, and help explain resonance

Electron density from π bonds can be distributed symmetrically all around the ring, above and below the plane.