| Dougherty Valley HS Chemistry | |-------------------------------| | Summary of Molecular Geometry | | Name: | Per: | Seat #: | | |-------|------|---------|--| | name. | Per. | Seal #. | | ## **WORKSHEET #6a** In the "Molecular Geometry" column, write one the following molecular shapes in the appropriate spot in the table. Note that some terms may be used more than once. | bent | seesaw | T-shaped | trigonal bipyramidal | |------------|------------------|-----------------|----------------------| | linear | square planar | tetrahedral | trigonal pyramidal | | octahedral | square pyramidal | trigonal planar | | In the "Example of a Molecule" column, write one of the following chemical formulas in the appropriate spot in the table. | CO ₂ | CIF ₃ | PF ₃ | SF ₂ | SO ₂ | XeF ₂ | |-----------------|------------------|-----------------|-----------------|-----------------|------------------| | CF ₄ | CIF ₅ | PF ₅ | SF ₄ | SO ₃ | XeF ₄ | | | | | SF ₆ | | | In the "Example of a Polyatomic Ion" column, write one of the following chemical formulas in the appropriate spot in the table. | | Br ₃ ⁻ | CIO ₂ - | NO ₂ ⁺ | PF ₄ ⁻ | SO ₄ ²⁻ | |---|------------------------------|-------------------------------|------------------------------|------------------------------|-------------------------------| | _ | | CIO ₃ - | NO ₂ - | PF ₆ ⁻ | SF ₅ ⁺ | | | | CIF ₄ ⁻ | NO ₃ ⁻ | | | In the "Total Number of Valence Electrons" column, write one of the following numbers in the appropriate spot in the table. 16 18 20 22 24 26 28 32 34 36 40 42 48 | Bonding
Domains
around
central
atom | Nonbonding
Domains
around
central
atom | Total # of
Electron
Domains
around
central
atom | Electron Domain
Geometry | Molecular Geometry | Example of a Molecule | Example
of a
Polyatomic
Ion | Total
Number
of Valence
Electrons | |---|--|--|-----------------------------|--------------------|-----------------------|--------------------------------------|--| | 2 | 0 | 2 | linear | | | | | | 3 | 0 | 3 | trigonal
planar | | | | | | 2 | 1 | 3 | trigonal
planar | | | | | | 4 | 0 | 4 | tetrahedral | | | | | | 3 | 1 | 4 | tetrahedral | | | | | | 2 | 2 | 4 | tetrahedral | | | | | | 5 | 0 | 5 | trigonal
bipyramidal | | | | | | 4 | 1 | 5 | trigonal
bipyramidal | | | | | | 3 | 2 | 5 | trigonal
bipyramidal | | | N/A | | | 2 | 3 | 5 | trigonal
bipyramidal | | | | | | 6 | 0 | 6 | octahedral | | | | | | 5 | 1 | 6 | octahedral | | | N/A | | | 4 | 2 | 6 | octahedral | | | | | Use the periodic table to determine the total number of valence electrons for each molecule or polyatomic ion. | Chemical
Formula | Total Number
of Valence
Electrons | |---------------------|---| | CO ₂ | | | CF ₄ | | | CIF ₃ | | | CIF ₅ | | | PF ₃ | | | PF ₅ | | | SF ₂ | | | SF ₄ | | | SF ₆ | | | SO ₂ | | | SO ₃ | | | XeF ₂ | | | XeF ₄ | | | Chemical
Formula | Total Number of Valence Electrons | |-------------------------------|-----------------------------------| | Br ₃ ⁻ | | | CIO ₂ - | | | CIO ₃ - | | | CIF ₄ ⁻ | | | NO ₂ ⁺ | | | NO ₂ - | | | NO ₃ - | | | PF ₄ ⁻ | | | PF ₆ ⁻ | | | SO ₄ ²⁻ | | | SF ₅ ⁺ | | Write the total number of valence electrons for each of the following Lewis dot structures. | Lewis Dot Structure | Total
Number
of Valence
Electrons | |---|--| | | | | | | | | | | | | | ::::::::::::::::::::::::::::::::::::::: | | | ::::::::::::::::::::::::::::::::::::::: | | | Lewis Dot Structure | Total
Number
of Valence
Electrons | |---------------------|--| For each type of molecular geometry, identify the number of bonding and nonbonding domains around the central atom. In addition, write the name of the molecular shape. | Molecular
Geometry | Bonding
Domains
around
central
atom | Nonbonding
Domains
around
central
atom | Name of
Molecular
Shape | |-----------------------|---|--|-------------------------------| | 0-0-0 | Molecular
Geometry | Bonding
Domains
around
central
atom | Nonbonding Domains around central atom | Name of
Molecular
Shape | |-----------------------|---|--|-------------------------------| |