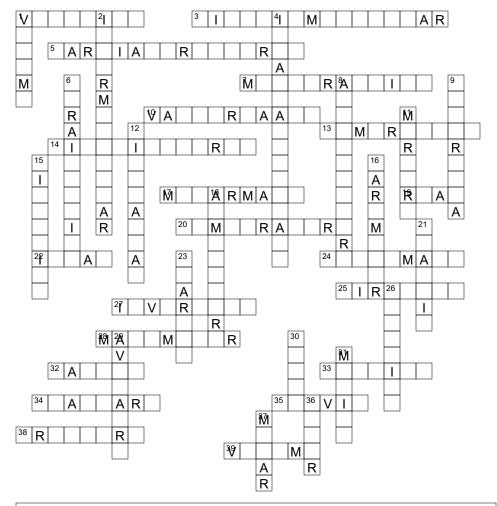

Gases

Across

١.	At higher temperatures, gas particles have,	20.	v Olulli
	on average, a greater		propor
3.	The main theory of gas behaviour:	27.	Pressi
	theory (KMT)		propor
5.	The total pressure in a mixture of gases is	28.	A devi
	the sum of the for the gases in the		the lab
	mixture (plural)	32.	This s
7.	The of a substance in a mixture can		pressu
	be found by dividing moles of that substance	33.	Gases
	by the total moles (or partial pressure by		tempe
	total pressure)	34.	STP:
10.	The equation takes the ideal	35.	The al
	gas law and adds corrections to account for		negati
	real gases		
13.	Gases can be because of the relatively		A force
	large space between particles	39.	If the t
	KE = 3RT/2 (KE = average)		K to 40
17.	The bigger the of a gas, the slower		double
	the particles will move at a given temperature		
19.	Ideal gases don't exist; instead we		
	experience gases every day.		
20.	The only variable that determines the		
	average kinetic energy of gas particles		
	A gas described by KMT is said to be		
24.	The distribution shows how the		
	distribubtion of kinetic energies (or		

velocities) of gas particles takes the form of

a bell curve


At higher temperatures, gas particles have

- 25. Volume and temperature of gases are ____
- 27. Pressure and volume of gases are ____ proportional
- 28. A device used to measure gas pressure in the lab
- 32. This scientist discovered how to find total pressure of gases in a mixture
- 33. Gases do not behave ideally at very ____ temperatures and ____ pressures (2 words)
- 34. STP: temperature and pressure
- 35. The absolute temperature scale has no negative temperatures it uses units called
- 38. A force acting over an area creates _
- 39. If the temperature of gas doubles from 200 K to 400 K, the ____ of the gas will also double if other variables are held constant

Down

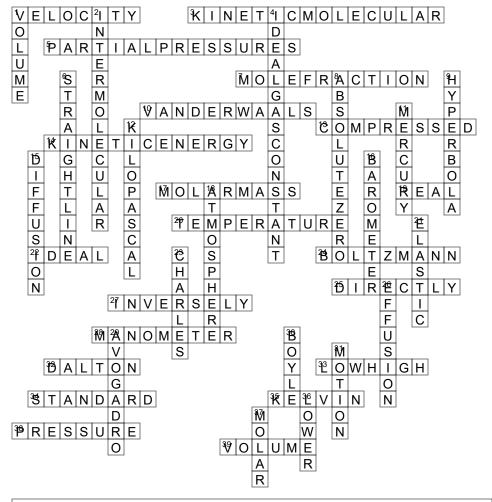
- A postulate of KMT: gas
 particles are not just small ...
 they have no ___! Just points
 in space.
- A postulate of KMT: gas
 particles don't experience any
 forces
- 8.314 kPa-L/mol-K or 0.08206 atm-L/mol-K
- A graph of pressure and temperature for gases would take the shape of a __________
- 8. -273.15°C:
- A graph of presssure vs volume would take the shape of a ____
- Traditionally, a barometer was filled with liquid ____, which led to a common unit for pressure
- 12. A unit of pressure
- 15. Gases will spread out from areas of high concentration to areas of low concentration ... this is called
- 16. A device used to measure atmospheric pressure
- 18. A unit of pressure
- 21. A postulate of KMT: collisions between particles don't lose energy ... they are ___ collisions
- 23. This scientist studied the effect of changing temperature on the volume of a gas
- 26. A gas escaping through a pinhole opening into a vacuum outside
- 29. This scientist studied the relationship between the amount of gas and its volume
- This scientist studied the relationship between pressure and volume of gases
- 31. One of the postulates of KMT: Gas particles are in constant, random
- 36. Atmospheric pressure is ____ at the top of a mountain than at sea level.
- 37. At STP, 22.4 L is the ____ volume of any gas

Gases

Across

1.	At higher temperatures, gas particles have,	25. Volume and temperature of gases are
	on average, a greater	proportional
3.	The main theory of gas behaviour:	27. Pressure and volume of gases are
	theory (KMT)	proportional
5.	The total pressure in a mixture of gases is	28. A device used to measure gas pressure in
	the sum of the for the gases in the	the lab
	mixture (plural)	32. This scientist discovered how to find total
7.	The of a substance in a mixture can	pressure of gases in a mixture
	be found by dividing moles of that substance	33. Gases do not behave ideally at very
	by the total moles (or partial pressure by	temperatures and pressures (2 words)
	total pressure)	34. STP: temperature and pressure
10.	The equation takes the ideal	35. The absolute temperature scale has no
	gas law and adds corrections to account for	negative temperatures - it uses units called
	real gases	
13.	Gases can be because of the relatively	38. A force acting over an area creates
	large space between particles	39. If the temperature of gas doubles from 200
14.	KE = 3RT/2 (KE = average)	K to 400 K, the of the gas will also
17.	The bigger the of a gas, the slower	double if other variables are held constant
	the particles will move at a given temperature	
19.	Ideal gases don't exist; instead we	
	experience gases every day.	
20.	The only variable that determines the	
	average kinetic energy of gas particles	
22.	A gas described by KMT is said to be	
24	The distribution shows how the	

distribubtion of kinetic energies (or velocities) of gas particles takes the form of


a bell curve

Down

- 1. A postulate of KMT: gas particles are not just small ... they have no ___! Just points in space.
- 2. A postulate of KMT: gas particles don't experience any forces
- 8.314 kPa-L/mol-K or 0.08206 atm-L/mol-K
- 6. A graph of pressure and temperature for gases would take the shape of a
- 8. -273.15°C:
- 9. A graph of presssure vs volume would take the shape of a ____
- 11. Traditionally, a barometer was filled with liquid ____, which led to a common unit for pressure
- 12. A unit of pressure
- 15. Gases will spread out from areas of high concentration to areas of low concentration ... this is called
- A device used to measure atmospheric pressure
- 18. A unit of pressure
- 21. A postulate of KMT: collisions between particles don't lose energy ... they are collisions
- 23. This scientist studied the effect of changing temperature on the volume of a gas
- 26. A gas escaping through a pinhole opening into a vacuum outside
- 29. This scientist studied the relationship between the amount of gas and its volume
- 30. This scientist studied the relationship between pressure and volume of gases

- 31. One of the postulates of KMT: Gas particles are in constant, random
- 36. Atmospheric pressure is ____ at the top of a mountain than at sea level.
- 37. At STP, 22.4 L is the ____ volume of any gas

Gases

Across

ľ	 At higher temperatures, gas particles have, on average, a greater 	25. Volume and temperature of gases are proportional
(3. The main theory of gas behaviour: theory (KMT)	27. Pressure and volume of gases are proportional
	5. The total pressure in a mixture of gases is the sum of the for the gases in the mixture (plural)	28. A device used to measure gas pressure in the lab 32. This scientist discovered how to find total
-	7. The of a substance in a mixture can be found by dividing moles of that substance by the total moles (or partial pressure by total pressure)	pressure of gases in a mixture 33. Gases do not behave ideally at very temperatures and pressures (2 words) 34. STP: temperature and pressure
-	10. The equation takes the ideal gas law and adds corrections to account for real gases	35. The absolute temperature scale has no negative temperatures - it uses units called
ľ	13. Gases can be because of the relatively large space between particles	38. A force acting over an area creates39. If the temperature of gas doubles from 200
	14. KE = 3RT/2 (KE = average) 17. The bigger the of a gas, the slower the particles will move at a given temperature	K to 400 K, the of the gas will also double if other variables are held constant
	19. Ideal gases don't exist; instead we experience gases every day.	
2	20. The only variable that determines the average kinetic energy of gas particles	
2	22. A gas described by KMT is said to be	
2	24. The distribution shows how the	
	distribubtion of kinetic energies (or	
l	velocities) of gas particles takes the form of	

a bell curve

Down

- 1. A postulate of KMT: gas particles are not just small ... they have no ___! Just points in space.
- 2. A postulate of KMT: gas particles don't experience any forces
- 8.314 kPa-L/mol-K or 0.08206 atm-L/mol-K
- 6. A graph of pressure and temperature for gases would take the shape of a
- 8. -273.15°C:
- 9. A graph of presssure vs volume would take the shape of a ____
- 11. Traditionally, a barometer was filled with liquid ____, which led to a common unit for pressure
- 12. A unit of pressure
- 15. Gases will spread out from areas of high concentration to areas of low concentration ... this is called
- A device used to measure atmospheric pressure
- 18. A unit of pressure
- 21. A postulate of KMT: collisions between particles don't lose energy ... they are collisions
- 23. This scientist studied the effect of changing temperature on the volume of a gas
- 26. A gas escaping through a pinhole opening into a vacuum outside
- 29. This scientist studied the relationship between the amount of gas and its volume
- 30. This scientist studied the relationship between pressure and volume of gases
- 31. One of the postulates of KMT: Gas particles are in constant, random
- 36. Atmospheric pressure is ____ at the top of a mountain than at sea level.
- 37. At STP, 22.4 L is the ___ volume of any gas